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Abstract 

Despite the fact that off-the-shelf software applications tend to become more and more 

feature-rich, they are still often felt to be incomplete, because it will hardly ever be 

possible to hit all requirements of a user out of the box, regardless of how big and 

complex an application is. For desktop applications, plugin frameworks are a solution 

for this problem, which allows developers to build a thin layer of basic functionality 

that can be extended by plugin components and thus tailored to the needs of 

individual users. For web applications on the other hand, existing plugin frameworks 

are not suitable to enable users to install their user-specific plugins. However, as web 

applications increasingly supersede desktop applications, web applications also 

become feature-rich and therefore should also be extensible and customizable in order 

to tailor it to the needs of individual users. 

A number of web platforms allow developers to componentize web applications. 

However, as web applications are executed on a web server, but not on each client-side 

computer individually, in existing solutions only developers can benefit from this 

modularity, whereas users cannot adapt web applications with components. Moreover, 

existing solutions only allow changing the set of components for a web application, but 

they do not make web applications user-customizable, because all users are using the 

same set of server-side components. Developers can make their programs somewhat 

user-customizable, e.g., by allowing the users to adjust the user interface or to disable 

specific features. 

This thesis presents Plux for Web, a component model and a component infrastructure 

for building plugin-based web applications that are customizable and extensible with 

individual components per user and that can be distributed among multiple 

computers. Thus, user-specific plugins can either be installed on the web server, or 

they can be installed on the users’ client-side computers. 

The component model defines a metadata standard that allows adding and removing 

plugins in a plug-and-play manner, a deployment standard that maintains local and 

remote plugins for individual users, a composition standard that connects independent 

plugin components seamlessly to a coherent web application, an interaction standard 

that enables local and distributed communication between plugin components, and a 

customization standard that maintains optional settings for plugins. The component 

infrastructure implements the component model, and thus provides a platform that 

can assemble plugin-based distributed user-specific web applications. 
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Kurzfassung 

Obwohl Standardsoftware immer mehr Funktionalität bietet, vermissen Anwender 

trotzdem oft Funktionen für ihre ganz individuellen Anforderungen. Es ist nahezu 

unmöglich, dass Standardsoftware in ihrem Auslieferungszustand alle Anforderungen 

unterschiedlicher Anwender erfüllen. Für Desktopanwendungen bieten Plug-in-

Frameworks eine Lösung für dieses Problem. Diese erlauben Softwareentwicklern 

kompakte Kernanwendungen mit vielen Grundfunktionen zu entwickeln, die später 

von den Anwendern durch individuelle Plug-ins erweitert werden können. Für 

Webanwendungen bieten existierende Plug-in-Frameworks allerdings keine Lösung, 

die es Anwendern ermöglicht, ihre individuellen Plug-ins zu installieren. Da 

Webanwendungen an Bedeutung gewonnen haben, sollten auch sie individuell 

erweitert werden können, um sie an unterschiedliche Anforderungen anpassen zu 

können. 

Einige Webplattformen unterstützen Softwareentwickler bei der Erstellung von 

komponentenbasierten Webanwendungen. Da Webanwendungen allerdings auf einem 

Webserver ausgeführt werden und nicht auf den jeweiligen Computern der Anwen-

der, können nur Softwareentwickler oder Systemadministratoren die Modularität einer 

solchen komponentenbasierten Webanwendung nutzen. Anwender können solche 

Webanwendungen nicht mit ihren eigenen Komponenten anpassen. Außerdem 

ermöglichen existierende Techniken nur das Austauschen von Komponenten für alle 

Benutzer einer Webanwendung, nicht aber individuell für verschiedene Anwender. 

Üblicherweise können Softwareentwickler Webanwendungen nur für Anwender 

anpassbar machen, indem sie erlauben das Aussehen der Benutzeroberfläche zu 

verändern oder verschiedene Funktionen ein- und auszuschalten. 

Diese Dissertation präsentiert das Komponentenmodell Plux für Webanwendungen 

und eine Kompositionsinfrastruktur, die dieses Komponentenmodell implementiert. 

Plux ermöglicht Anwendern ihre Webanwendungen mit individuellen Plug-ins 

anzupassen und zu erweitern. Dabei können Komponenten verteilt auf 

unterschiedlichen Computern ausgeführt werden, wodurch Plug-ins entweder am 

Webserver oder auf den Anwender-Computern installiert werden können. 

Das Komponentenmodell spezifiziert: einen Metadaten-Standard, der es erlaubt Plug-

ins per Plug-and-play zu einer Webanwendung hinzuzufügen oder zu entfernen; einen 

Deployment-Standard, der lokale und verteilte Plug-ins für verschiedene Anwender 

individuell verwaltet; einen Kompositions-Standard, der voneinander unabhängige 

Plug-ins nahtlos zu einer einheitlichen Webanwendung verbindet; einen Interaktions-

Standard, der lokale und verteilte Kommunikation zwischen Plug-ins ermöglicht; und 

einen Konfigurations-Standard zur Verwaltung von optionalen Konfigurationsdaten 

für Plug-ins. Die Kompositionsinfrastruktur implementiert das Komponentenmodell 

und bietet eine Plattform zur Entwicklung von plug-in-basierten, verteilten und 

mehrbenutzerfähigen Webanwendungen. 
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1 Introduction 

Plugin architectures are well suited for building extensible and customizable 

applications from components. Users of web applications would also benefit 

from plugin architectures, because they could even tailor their web applications 

with individual plugins as they are used to in component-based desktop 

applications. As current plugin systems only target desktop applications, a 

solution for web applications that are extensible and customizable by users is 

needed. This chapter presents the problems of current plugin systems. It 

introduces the research project that constitutes the context for this thesis, gives 

an overview of the research contributions, and outlines the remaining chapters 

of this thesis. 

Despite the fact that software applications tend to become more and more feature-rich, 

they are still often felt to be incomplete, because it will hardly ever be possible to hit all 

requirements of a user out of the box, regardless of how big and complex an 

application is. For desktop applications, plugin frameworks are a solution for this 

problem, which allows developers to build a thin layer of basic functionality that can 

be extended by plugin components and thus tailored to the needs of individual users. 

However, as web applications increasingly supersede desktop applications, web 

applications also become feature-rich and therefore should also be extensible and 

customizable to tailor to the needs of individual users. 

A number of web platforms allow developers to componentize web applications. 

However, in existing solutions only developers can benefit from this modularity, 

whereas users cannot adapt web applications with components. Moreover, existing 

solutions only allow changing the set of components for a web application, but they do 

not make web applications user-customizable, because all users are using the same set 

of components. Developers can make their programs somewhat user-customizable, 

e.g., by allowing the users to adjust the user interface or to disable specific features. 

However, this must be individually programmed into each web application and is not 

supported by the web platform. 

Another issue that needs to be individually programmed is access to client-side 

resources (e.g., integration of client-side software or hardware such as a point-of-sale 
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terminal), because the integration of user-specific client-side plugins into server-side 

web applications is also not supported by existing plugin systems. 

This thesis presents Plux for Web, a component model and a component infrastructure 

for building plugin-based web applications that are customizable and extensible with 

individual components per user and that can be distributed across multiple computers. 

The component model defines the metadata standard, the deployment standard, the 

composition standard, the interaction standard, and the customization standard for 

distributed web applications. The component infrastructure implements the 

component model, and thus provides a platform that can assemble user-specific web 

applications by seamlessly integrating user-specific components, which can be 

installed on server-side and on client-side computers. 

1.1 Research Context 

This thesis was realized as part of the industrial research project: Component 

architectures for next-generation business computing systems. One of this project’s goals is 

to design and implement a component model and a composition infrastructure for 

extensible and customizable web-based enterprise applications. The project is funded 

by and conducted in close cooperation with BMD Systemhaus GmbH and the Christian 

Doppler Laboratory for Automated Software Engineering associated with the Institute of 

System Software at the Johannes Kepler University Linz. BMD builds enterprise resource 

planning software for small and medium-sized companies in Austria, Germany, and 

Hungary. 

Earlier in this project, the Plux component model and composition infrastructure for 

desktop applications [Wolfinger, 2010] was developed as the basis for the next-

generation business applications of BMD. Programs developed with Plux are built with 

fine-grained components, which are assembled by Plux, using a plug-and-play 

approach. Users can adapt the program on-the-fly to the working situation at hand by 

adding, removing, or swapping the set of components to be used.  

BMD offers its enterprise software as a desktop application as well as a browser-based 

web application. They want to offer the flexibility provided by Plux both for desktop 

applications and for their web application. The difference between the desktop 

application and the web application is that the latter must support multiple users and 

component distribution over the network. Multi-user support means that the 

enterprise application should be customizable for an individual user to meet his 

specific needs without interfering with the other users. Component distribution 

support means that the enterprise application should be seamlessly assembled from 

plugin components that can reside on the web server as well as on the client-side 

computer. 

The next section discusses the problems that must be solved to support multiple users 

and component distribution in dynamically composed web applications. 
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1.2 Problem Statement 

Despite the success of plugin systems for desktop applications, they still suffer from 

several deficiencies in the domain of web applications. This thesis discusses the 

problem of how to assemble web applications such that every user can have his 

individual set of components and how to allow these components to reside on different 

computers. Existing web frameworks and plugin systems do not provide a solution for 

this problem, as they lack support for the following issues to be solved. How these 

issues can be solved is an open research problem. 

 User-specific plugins. In web applications that are built with existing web 

frameworks and plugin systems, applications are assembled with the same set 

of components for every user. Such web applications do not allow individual 

users to tailor the program to their needs, e.g., by integrating their user-specific 

components. Of course, the programmer of a web application could program 

such a feature manually, but this effort must be repeated for every web 

application. A reusable solution for user-specific plugins is missing. 

 Dynamic reconfiguration. Existing web frameworks do not support the 

adaptation of a web application without restarting it. Dynamic reconfiguration 

is particularly useful in combination with user-specific plugins, because it 

would be impractical to restart a web application every time a user adds 

plugins. 

 Distributed plugins. Web applications that are built with existing plugin 

technology typically require plugins to reside on the web server. Such 

applications cannot integrate user-specific plugins from the client computer; 

this would be necessary, for example, in order to connect client-side hardware 

like a barcode scanner to the web application. A solution for distributing 

components of a web application to multiple computers is not available. 

 Automatic composition. Web frameworks typically do not connect components of 

a web application automatically. Even if web frameworks are combined with 

plugin systems that support automatic composition, distributed components 

still need to be connected programmatically. Support for automatic 

composition of distributed components is not available. Automatic composition 

for local and for remote components would be useful to enable users to change 

user-specific components on the server side and on the client side without 

causing any extra programming effort for the developers of a web application. 

 Implementation transparency for distributed components. Plugin systems that 

support distributed components use technologies such as remoting or web 

services for communication between these components. As such technologies 

do not support distributed thread management, reference identity, and data 
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synchronization for serialized objects, distributed components must be 

implemented in a different way than local components. What we would like to 

have is implementation transparency, i.e., we would like to implement each 

component in the same way, regardless of whether it is connected locally or 

remotely. Implementation transparency would also allow users to install the 

same component either on the server side or on the client side, as their 

implementations do not differ. 

1.3 Research Contributions 

This thesis claims the following research contributions, which are combined into a 

single coherent component model for building plugin-based web applications that are 

customizable and extensible with individual plugins per user and that supports plugin 

distribution across multiple computers: 

 Automatic composition. The thesis presents an automatic composition approach 

that allows adding and removing plugins in a plug-and-play manner regardless 

if plugins are deployed locally on a single computer or if they are distributed 

across multiple computers. The composition infrastructure uses the self-

contained metadata of plugins to retrieve requirements and provisions of 

components and connects them automatically. 

 Declarative composition behaviors. The thesis presents composition behaviors, 

which are reusable composition logic that can be attached declaratively to 

components. Composition behaviors can influence the automatic composition 

process, e.g., to ensure a certain composition order for components, which may 

are dependent on the existence of other components; to cancel certain 

composition operations because of unfulfilled preconditions, or react on 

composition events to trigger new composition operations. Composition 

behaviors encapsulate such composition logic into a reusable composition 

library. 

 User-specific plugins. This thesis presents an approach that enables users to 

extend and customize web applications with their individual user-specific 

plugins. The same application can be extended in different ways by different 

users at the same time without affecting other users. For this, the composition 

infrastructure maintains individual composition states for users in separated 

user scopes. 

 Distributed plugins. This thesis presents an approach for distributed plugin 

components that enables users to install plugins either on the server-side or on 

the users' client-side computers. The distribution of plugins is transparent to 

plugin developers, i.e., the implementation of plugins remains the same 
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regardless if they are connected locally on the same computer or remotely on 

different computers. For this, the presented component model specifies 

distributed thread management, reference identity and data synchronization 

for distributed objects, as well as a distributed garbage collection mechanism. 

 Composition infrastructure. The thesis presents the design and implementation of 

a composition infrastructure that implements the component model that is 

specified in the thesis. The infrastructure provides a platform that assembles 

user-specific web applications from plugin components that can be distributed 

across multiple computers. It composes web applications dynamically, i.e., the 

web application can be reconfigured by swapping sets of components without 

restarting the application. 

1.4 Project History 

Plux for Web is part of the Plux project, which researches composition infrastructures 

for dynamically composed applications. The original Plux project [Wolfinger, 2010] 

targeted desktop applications only. The Plux research project is conducted by the 

Christian Doppler Laboratory for Automated Software Engineering associated with the 

Institute for System Software at the Johannes Kepler University Linz, in cooperation 

with the industry partner BMD Systemhaus GmbH. 

At the time of this writing the Plux team comprises: the project manager Reinhard 

Wolfinger; Markus Löberbauer, who works on testing and debugging of dynamically 

composed applications; and the Ph.D. student Markus Jahn, who works on 

dynamically composed web applications. 

Our industry partner BMD Systemhaus initiated the project in an effort to build the 

basis for their next-generation enterprise application, which comes in a desktop and a 

web variant. Both variants should be extensible with third-party plugins and 

reconfigurable at run time. 

In 2006 we designed a component model based on the metaphor of slots and 

extensions [Wolfinger et al., 2006]. In 2007, we published a composition infrastructure 

and demonstrated novel applications, which can be reconfigured in a plug-and-play 

manner. For the first time, users could add components to a program and remove 

components from a program to adapt it to their working situation at hand, without 

programming, configuring, or even restarting the program. A further novelty was a 

visualizer that instantly shows the program’s architecture and its changes. 

Furthermore, we published integration models for secure integration of untrusted 

third-party plugins [Wolfinger and Prähofer, 2007]. 

From 2008 to 2010 we redesigned Plux to reduce the programming effort for 

component developers. This has been accomplished with a richer composition model 

[Jahn et al., 2011], composition behaviors [Jahn et al., 2010a], and component templates 
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[Wolfinger et al., 2010]. With the richer composition model, components can share 

information in a standardized manner; with behaviors, composition logic can be 

reused to control complex composition scenarios declaratively; and with component 

templates, custom components can be generated from generic component templates. 

From 2010 to 2012 Plux was extended to support distributed multi-user web 

applications [Jahn et al., 2010b; Jahn et al., 2011]. We designed a method for 

composability testing and composition debugging [Löberbauer et al., 2010; 

Löberbauer et al., 2012] and implemented a composability test tool and a composition 

debugger [Lengauer, 2012]. We also created a model for retrofitting security in 

component-based programs [Wolfinger et al., 2012] and a security manager for license 

enforcement and retrofitted security in Plux [Hribernig, 2012]. 

During the whole project the following student projects were conducted based on Plux: 

Stephan Reiter and Christian Mittermair componentized a customer relationship 

management application [Reiter and Wolfinger, 2007; Mittermair, 2010], Markus Jahn 

created a cross compiler infrastructure [Jahn, 2009], Mario Eder created a web site 

monitor [Eder, 2008], Rainer Pichler created a tool to record run-time statistics 

[Pichler, 2009], Zoltan Toth created a script interpreter for composition scripts, Andreas 

Gruber created a graphical composition tool for Plux programs [Gruber, 2010], Sabine 

Weiss created a highly extensible customer relationship management application 

[Weiss, 2010], Patrick Hagmüller ported the core elements of Plux from C# to Delphi 

[Hagmüller, 2013], Bernhard Schenkermayr created a highly customizable calculator 

[Schenkermayr, 2013], Thomas Reinthaler created an application builder 

[Reinthaler, 2012]. 

1.5 Structure of the Thesis 

Chapter 2 discusses the state of the art for component systems from three angles: it 

looks at systems for local components, at systems for distributed components, and at 

systems for web application components. It defines the component terminology and 

the distributed systems terminology used in this thesis. 

Chapter 3 describes the Plux component model, which specifies metadata, deployment, 

composition, interaction, and customization standards for Plux components. 

Chapter 4 describes the benefits of the Plux component model for the web with typical 

scenarios for component-based distributed multi-user web applications that are 

dynamically reconfigurable. It uses a case study of a web application for recoding 

working hours. 

Chapter 5 describes the Plux component model for the web, which extends the 

component model from Chapter 3 with specifications of deployment, composition and 

interaction standards required for distribution, multi-user, and web support. 
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Chapter 6 describes the Plux composition infrastructure, which implements the Plux 

component model and allows executing distributed multi-user web applications built 

from Plux components. 

Chapter 7 evaluates the approach of building component-based distributed multi-user 

web applications with Plux by the use of case studies. It presents a number of statistics 

concerning the degree of component reusability, memory consumption and delay time 

issues by comparing component-based desktop applications with component-based 

distributed multi-user web applications. 

Chapter 8 summarizes the contributions of this thesis, addresses open issues of the 

current approach, presents ideas for future research, and concludes with an overview 

of the current state. 
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2 State of the Art 

The idea of composing desktop applications from loosely coupled, prefabricated, 

and reusable software components is already pursued since several decades. 

More recently it became popular to use plugin frameworks in order to make 

desktop applications customizable and extensible with third-party plugins. 

However, in times of the internet, desktop applications are increasingly 

overtaken by web applications. There are many web application frameworks that 

support developers in building web applications. Although such frameworks 

embrace component technology, they have not yet picked up the concept of 

plugin components. The idea of Plux for web applications is to bring both 

worlds together, plugin component systems and web application frameworks. 

This chapter overviews the history of both worlds from three angles, namely 

components for applications that run on a single computer, such that are 

distributed across multiple computers, and such that are used specifically to 

build web applications. Furthermore, it defines the component terminology used 

in this thesis. 

In contrast to monolithic applications, component-based applications enable 

developers to reuse program logic implemented by other developers, as well as to 

replace an implementation of one manufacturer with an implementation of another, 

without affecting the rest of the application. Furthermore, using composition, 

developers can assemble programs from components without programming effort. 

With plugin components, end users also can extend and customize their applications, 

e.g., by adding features for their specific needs and by removing features they do not 

need. Distributed component systems enable developers to build applications that are 

distributed across multiple computers in different locations, e.g., to connect the 

applications of businesses that work together. Web application frameworks enable 

developers to build applications where the application runs on a web server and the 

users access it using a web browser, thus minimizing the deployment effort for the 

manufacturers and the maintenance effort for the users. 

This chapter presents the history, the terminology, and the capabilities of technologies 

that are relevant for this thesis. These technologies are grouped into component 

technologies, distribution technologies, and web technologies in the following sections: 
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Section 2.1 gives a historical overview from components to component-based web 

technologies. Section 2.2 defines the component terminology, the distribution 

terminology, and the web terminology. Section 2.3 describes capabilities that are 

required to build component-based distributed web applications, evaluates which of 

these capabilities are supported by existing technologies and concludes this chapter 

with an overview of deficiencies of current technologies. 

2.1 Historical Overview 

Since this thesis deals with plugin-based distributed web applications, this section 

deals with a historical perspective of the underlying technologies, namely components, 

distribution, and web technology. 

2.1.1 Component Technologies 

The idea of component systems goes back to [McIlroy, 1968] who devised that software 

should be componentized, i.e., built from prefabricated components, in order to 

overcome the so-called software crisis. The term software crisis described the problems 

that resulted from rising complexity of computer programs. The first component 

systems that are still relevant today appeared 1964, as Dynamic Link Libraries (today dll 

files in Windows) or Dynamic Shared Objects (Unix SO). Dynamic linking refers to 

components that are linked while a program is loaded and was originally developed in 

the Multics operating system [Schell, 1971]. 

The following sections present the history of today's component technology structured 

by the major platforms Microsoft, Object Management Group, and Java, as well as Web 

Component Technologies and Academic Component Technologies. 

Microsoft Component Technologies 

Microsoft started developing the Component Object Model (COM) [Microsoft, 2012c and 

Box, 1998] in 1987. COM emerged from Dynamic Data Exchange (DDE) 

[Microsoft, 2012a], a technology used to implement the clipboard in the Windows 

operating system. In 1992, DDE evolved into Object Linking and Embedding (OLE) 

[Microsoft, 2012b], a service to embed Microsoft Office documents into other documents. 

OLE allowed, for example, embedding a spreadsheet into a text document and editing 

the spreadsheet from within the word processor without switching applications. In 

1995, the COM specification was published and it is still used in many services of the 

Windows operating system, e.g., the Windows Explorer can be extended with COM 

components. In 1996, COM was extended into the Distributed Component Object Model 

(DCOM) [Microsoft, 2012d]. DCOM supports data exchange beyond computer 

boundaries for distributed applications, using Microsoft Remote Procedure Calls 

(MSRPC) [Microsoft, 2003]. Facing the complexities of OLE and the poor support for it 

in development tools, Microsoft simplified the specification in 1996 and rebranded the 
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technology as ActiveX [Microsoft, 1996 and The Open Group, 1999]. ActiveX was used 

in the Internet Explorer web browser in order to embed active content into web pages. 

Such ActiveX components are installed on the server, automatically downloaded to the 

client, and executed in the browser. The development culminates in 1999 into COM+ 

[Microsoft, 2012e], which comprises DCOM and additional services, such as Microsoft 

Transaction Server (MTS) [Microsoft, 1998] for distributed transactions, and as well as 

Microsoft Message Queuing (MSMQ) [Microsoft, 2012f] for asynchronous inter-

application messaging. Today, COM+ is still an essential part of the Windows 

operation system. 

In 2002, Microsoft presented the .NET framework [Microsoft, 2012g], as a successor of 

COM+. In .NET components are deployed as assembly files, which contain IL code, 

metadata, and resources. .NET is language-independent, i.e., programs can be written 

in multiple programming languages, such as C# and Visual Basic. .NET includes a 

large base class library with support for remoting, web services, and web applications.  

In 2010, Microsoft released the Managed Extensibility Framework (MEF) 

[Microsoft, 2010]. MEF is a plugin framework that is based on .NET and uses .NET 

attributes to specify component metadata, which are used by the MEF composition 

engine to connect components with their required services. Currently MEF is used in 

the Microsoft Visual Studio IDE [Microsoft, 2012h] to make it extensible and 

customizable via third-party plugins. 

OMG Component Technology 

In 1991, the Object Management Group, an international consortium of renowned 

corporations, specified the Common Object Request Broker Architecture (CORBA) 

[OMG, 2012]. CORBA is a middleware standard for distributed components that 

allows interacting software components to be distributed across multiple computers. 

CORBA is a binary standard, which is implemented in various programming 

languages, available for multiple platforms, and supports multiple communication 

protocols. Since 1991 the development of CORBA is ongoing: the specification of 

CORBA 2.0 was released in 1997, the specification of CORBA 3.0 was released in 2002, 

and the current specification is CORBA 3.3, which was released in November 2012. 

Java Component Technologies 

In 1996, Sun Microsystems developed a component system called Java Beans [Sun 

Microsystems, 1996]. Beans basically are plain Java objects conforming to the Java 

Beans convention, i.e., a bean implements a defined set of properties as getter and 

setter methods. A bean can encapsulate multiple Java objects, can be serialized, and 

thus can be transported over the network. Developers can use, for example, the bean 

workbench to compose an application from beans, serialize composed applications, 

and deploy them to users, without any programming effort [Beer, 2000]. 
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In 1996 Jaroslav Tulach started together with a group of students the NetBeans project 

[Oracle, 2013b] at the Faculty of Mathematics and Physics of the Charles University in 

Prague. NetBeans is an application framework, which allows developers to compose 

applications from a set of modules. Initially NetBeans was called Xelfi, because the goal 

of the project was to write a Java IDE similar to the Delphi IDE. The name NetBeans 

was derived from network JavaBeans. The NetBeans team wanted to create an 

abstraction of the network and enable developers to manipulate network JavaBeans 

from any IDE. However, extending the existing IDEs with plugins was very difficult. 

Therefore the NetBeans team decided to use the experience from Xelfi to create a new 

modular IDE. In 1999 NetBeans DeveloperX2 was released, which was redesigned for a 

modular architecture and which forms the basis of the current NetBeans platform. 

Furthermore, also in 1999, Sun Microsystems became involved in the NetBeans project. 

A few months later, NetBeans became an open-source project. Many developers started 

using the NetBeans IDE's platform to build their own applications from their own 

plugins. In 2010 Oracle acquired Sun Microsystems and NetBeans became a part of 

Oracle, which continues work on the NetBeans project. [Oracle, 2013c; Oracle, 2013d] 

In 1997, IBM released Enterprise Java Beans (EJB) [Vatkina, 2013], a server-side 

component architecture for modular enterprise applications. EJB is used to implement 

application servers and targets concerns such as persistence, transactions, security, and 

distribution. EJB uses Java Remote Method Invocation (RMI) [Oracle, 2010], an API for 

distributed communication based on an object-oriented version of Remote Procedure 

Calls [Thurlow, 2009]. 

In 2000, the Open Services Gateway Initiative Alliance (OSGi) [OSGi Alliance, 2012a] 

published a specification for the OSGi component system. The Java-based OSGi 

provides a service registry that is used by components to retrieve their requested 

services. OSGi implementations are available from multiple vendors, e.g., Knopflerfisch 

[Makewave, 2013], Apache Felix [The Apache Software Foundation, 2008], or Eclipse 

Equinox [Equinox, 2012]. 

In 2001, IBM presented Eclipse [Eclipse, 2006], an integrated development environment 

(IDE) for Java. Eclipse is plugin-based so that users can assemble a custom IDE for their 

specific needs from plugin components. Since 2004 Eclipse is based on the OSGi 

implementation Equinox [Equinox, 2012]. Eclipse evolved into the most outstanding 

representative for plugin infrastructures, because various third-party developers 

provide a vast number of plugins, e.g., for version control, bug tracking, or profiling. 

In 2007, the Eclipse Rich AJAX Platform (RAP) [RAP, 2012; Muskalla and 

Sternberg, 2007] was introduced. Since Version 2.0, RAP was renamed to Remote 

Application Platform. It allows building web applications using Eclipse plugins. Thereby 

a server-side Equinox environment loads the Eclipse plugins onto a web server and 

RAP renders the user interface for web browsers using technologies such as HTML 

[Berjon et al., 2013], JavaScript [Ecma, 2011], and JavaScript Object Notation (JSON) 

[Crockford, 2006]. 
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Netscape Component Technology 

The most frequent use of plugin components in the web are browser plugins. Browser 

plugins enable users to customize web browsers, which are used to access web 

applications, but not to customize the accessed web applications. Starting in 1996, 

Netscape introduced the Netscape Plugin Application Programming Interface (NPAPI) 

[NPAPI, 2012 and Oliphant, 1996] in the Netscape web browser. Since 2004 all 

renowned web browsers use this API to integrate plugins for activate content, e.g., to 

view PDF documents, or to play music, video, and flash content. 

Academic Component Technologies 

In 1998, the Department of Distributed and Dependable Systems of the Charles 

University in Prague published the component system SOFA [Hnetynka and 

Plasil, 2006; Bures et al., 2006; Bures et al., 2007]. SOFA is a system for building 

distributed component-based applications. The component model is hierarchical, i.e., a 

component can consist of a set of other components, either primitive or composite. 

Primitive components are programmed, whereas composite components are 

declaratively composed from other primitive or composite components. 

Since 2006, the Christian Doppler Laboratory for Automated Software Engineering of 

the Johannes Kepler University in Linz developed the Plux component system 

[Wolfinger, 2010]. Plux is a plugin platform for extensible and customizable desktop 

applications. It supports dynamic composition and thus enables developers to build 

applications where users can load and integrate just those components they need for 

their current work. Users can also reconfigure an application on-the-fly by swapping 

sets of components while the application is running. From 2006 to now, Plux was 

enhanced with various improvements on the component model, as well as a solution 

for testing and debugging dynamically composed Plux applications. For detailed 

information about the evolution of Plux see the project history in Section 1.4. 

2.1.2 Distribution Technologies 

Berkeley Sockets 

In 1970 Berkeley Sockets [Tanenbaum and Van Steen, 2007 pages 141-142] enabled 

developers to send data from one computer to another through a standardized 

interface. The socket interface abstracts from the underlying operating system and is a 

communication endpoint to which an application can write data that is sent over a 

network to a remote socket, where an application can read the transmitted data. Today, 

sockets are still base communication technology in all web systems. 

Remote Procedure Calls (RPC) 

In 1976, the first idea of Remote Procedure Calls (RPC) was published in [White, 1976]. In 

1984, Andrew Birrell and Bruce Nelson published further work on RPC [Birrell and 

Nelson, 1984] and implemented the first version of RPC. RPC allows developers to call 
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procedures on remote computers instead of using explicit message exchange for 

remote interaction. The caller of a procedure is blocked until the receiver of the call has 

finished executing the procedure and the result is returned to the caller. The message 

passing, which is used behind the scene, is hidden from developers. In 1995, the 

Network Working Group released a proposed standard for the RPC Protocol 

Specification Version 2 [Srinivasan, 1995], which was updated by the draft standard for 

RPC Protocol Version 2 [Thurlow, 2009] in 2009. The idea of RPC was extended by 

other distribution technologies such as remoting. 

Java Remote Method Invocation (RMI) / .NET Remoting 

In 1997, Sun Microsystems released the Java Development Kit (JDK) Version 1.1 

[Oracle, 2013a] including the Remote Method Invocation (RMI) [Oracle, 2010] technology. 

Java RMI provides support for distributed objects and is the object-oriented successor 

of RPC. It allows calling methods of distributed objects with Java objects as arguments 

and as return values. In 2000, Sun Microsystems released the Java 2 Platfrom Standard 

Edition (J2SE) 1.3 with an adapted RMI implementation that is compatible to the 

CORBA [OMG, 2012] standard. Since 2004, J2SE 5.0 facilitates the implementation of 

distributed applications by automatic stub generation for distributed objects. Today, 

Java RMI is used for building distributed Java applications as well as for building 

communication infrastructure of higher-level component technologies such as OSGi 

Remote Services [OSGi Alliance, 2012b] or SOFA [Hnetynka and Plasil, 2006; Bures et 

al., 2006; Bures et al., 2007]. 

In 2002, Microsoft released the .NET Framework 1.0 [Microsoft, 2012g] with support for 

.NET Remoting [Microsoft, 2011a]. Similar to Java RMI, .NET Remoting provides an 

infrastructure for distributed method calls between objects. In contrast to Java RMI, 

.NET Remoting not only supports the transfer of serialized object copies or proxy 

interfaces that forward calls to the original object on the remote computer, but .NET 

Remoting also supports reference identity and data synchronization for special objects 

that inherit the MarshallByRef base class. MarshallByRef objects do not only provide the 

interface on the remote computer, but also their data fields. Modifications on the fields 

of such an object get synchronized with its counterpart on the remote computer. 

Web Services 

In 1998, the World Wide Web Consortium (W3C) introduced Web Services 

[Booth et al., 2004; Haas and Brown, 2004]. Web services are a platform-independent 

API for components, which can be used to build distributed component-based 

applications. Web services communicate using XML-based protocols, e.g., SOAP 

[Gudgin et al., 2007] or XML-RPC [Winer, 1999]. The interface of a web service is 

described using the Web Service Description Language (WSDL) [Christensen et al., 2001]. 

Web services that are documented with WSDL can be registered in a public repository 

and discovered using the Universal Description, Discovery, and Integration (UDDI) 

[Clement et al., 2004] service. 
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In 2004, the WS-interoperability Organization (WS-I) [OASIS, 2013], which is an industry 

consortium, created common guidelines for interoperability of web services. WS-I 

published various bundled web service specifications, which are called WS-I Profiles. 

The WS-I Basic Profile [Chumbley et al., 2010] comprises conditions for web service 

implementations to be WS-I conformant, message specifications, specifications for 

service description, publication and discovery, as well as security specifications. 

Besides the WS-I Basic Profile, the consortium published a number of further WS-I 

profiles such as for example the WS-I Attachments Profile, the WS-I Basic Security Profile, 

or the WS-I Reliable Secure Profile. 

Windows Communication Foundation (WCF) 

In 2006, Microsoft released the .NET Framework 3.0 including the Windows 

Communication Foundation (WCF) [Microsoft, 2012i]. WCF provides a unified 

programming model for Microsoft's distribution technologies, targets interoperability 

across platforms, and is used for building service oriented applications. Clients can use 

different transport protocols for consuming a service. WCF supports SOAP 

[Gudgin et al., 2007] over HTTP [Fielding et al., 1999], but also other messages over 

TCP [Postel, 1981], Named Pipes [Microsoft, 2013a], or Microsoft Message Queues 

[Microsoft, 2012f], which can be encoded as text or as compact binary format. 

Furthermore, developers can use their own transport and encoding format, if required. 

WCF supports reliable messaging, message queues, durable messages, and 

transactions. In 2006, WCF was enhanced with support for the JavaScript Object 

Notation (JSON) [Crockford, 2006] format to enable AJAX [Garrett, 2010] web pages for 

consuming WCF services. In 2010, the release of the .NET Framework 4.0 added 

support for Really Simple Syndication (former Rich Site Summary) (RSS) [Winer, 2003] 

and for Representational State Transfer (REST) [Fielding, 2000] to WCF. 

2.1.3 Web Technologies 

The World Wide Web was invented by Tim Bernes-Lee in 1990. He developed the 

HTTP protocol [Fielding et al., 1999], universal resource identifiers, as well as HTML 

[Berjon et al., 2013]. Furthermore, he developed a web server and web browser. The 

following sections present the history of technologies required for the Web. 

Common Gateway Interface 

In 1993, a team at the National Center for Supercomputing Applications (NCSA) 

specified the Common Gateway Interface (CGI) [Robinson and Coar, 2004]; a standard by 

which a web server can execute a program using input data that is sent by the web 

browser. The result of the program is passed back to the web server and sent as 

response to the web browser. Today, many large high-performance web sites still use 

web systems based on the idea of CGI. 
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Server Side Includes 

Between 1993 and 1995 (the exact date and author could not be established) Server Side 

Includes (SSI) were invented. SSI is a standard that provides support to embed 

dynamic content into HTML documents. It replaces placeholders in HTML with values 

retrieved from environment variables. Placeholders can also be filled from SSI 

commands that provide content, e.g., from external documents or programs. Today, 

SSI is outdated and replaced by other technologies. 

PHP: Hypertext Preprocessor 

In 1995, Rasmus Lerdorf presented the PHP: Hypertext Preprocessor (PHP) [The PHP 

Group, 2012]. PHP is an open source server-side scripting language designed for 

building dynamic web applications. Instead of starting external processes like in CGI, 

PHP embeds scripts into HTML documents and interprets them on the web server. In 

contrast to SSI that can only embed values from environment variables or simple 

functions, PHP scripts benefit from a feature-rich programming language and a 

comprehensive web support library. 

Java Web Technologies 

In 1995, Sun Microsystems introduced Java Servlets [Mordani, 2009], a server-side Java 

implementation with web capabilities such as parameter support and sessions. Servlets 

are Java classes, which are instantiated in a servlet container on the web server in order 

to handle client requests. The response contains dynamic content which is produced by 

Java code. Thus Servlets are the Java pendant to CGI scripts. In 1995, Sun also 

introduced Java Applets [Oracle, 2013e], which are Java applications that are deployed 

on a web server, retrieved via a web browser, and executed in a web page on the client. 

Java applets are executed in a sandbox and thus have no access to local resources, such 

as the file system, if the permission is not granted by the user. In 1999, JavaServer Pages 

(JSP) [Delisle et al., 2006] was released as a further improvement for dynamically 

generated web pages. JSP allows embedding Java code and JSP commands into HTML 

documents. A JSP compiler translates such HTML documents into a Servlet that 

contains Java code. The same year, Sun Microsystems published the Java Enterprise 

Edition (J2EE) [DeMichiel and Shannon, 2013]. J2EE includes several technologies that 

are relevant for web application development, such as components for server 

applications called Enterprise JavaBeans (EJB) [Vatkina, 2013], Java Database Connectivity 

(JDBC) [Anderson, 2006], Remote Method Invocation (RMI) [Oracle, 2010], and support 

for web services [Booth et al., 2004; Haas and Brown, 2004]. In 2004, JavaServer Faces 

(JSF) [Burns, 2013b] was introduced, a Java-based web application framework for web 

user interfaces. With JSF user interfaces are programmed with web controls in an 

object-oriented manner using the Model-View-Controller pattern. At run time, the 

framework renders the web controls into HTML. 
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Microsoft Web Technologies 

In 1996, Microsoft presented a successor technology of Server Side-Includes (SSI) called 

Active Server Pages (ASP) [Microsoft, 2012j]. ASP supports dynamically generated web 

pages, by embedding VBScript code into HTML documents, which is interpreted by 

the web server. ASP provides support for retrieving parameters from the request, for 

sessions, and for database connectivity. In 2002, Microsoft released an extended 

version called ASP.NET [Microsoft, 2012k] as part of the .NET Framework. As 

ASP.NET is built on the Common Language Runtime [Microsoft, 2012l], developers can 

use any of the languages support by .NET, such as C#, Visual Basic, and C++. In 

contrast to classic ASP, ASP.NET is compiled instead of interpreted, it is object-

oriented, supports web controls, remoting, and web services. In 2007, the Silverlight 

technology [Microsoft, 2011b] was released. Silverlight is a framework for building rich 

web applications that support interactive media. The runtime environment is installed 

as a browser plugin on the client side and allows executing .NET assemblies, which are 

downloaded from a web server on demand, when a web application is accessed. In 

order that access to local resources, e.g. the file system, is possible only if the user 

grants the permission, Silverlight assemblies are executed in a sandbox. 

Portlets 

In 2003, Portlets [Abdelnur and Hepper, 2003], which allow building extensible web 

applications, were introduced. The Portlet API is a thin layer on top of Java Servlets 

[Mordani, 2009] for integrating user interface components into web applications. 

Portlets can communicate with each other and are integrated into a web site using a 

portal server. 

2.2 Terminology 

This section covers the terminology that is used in this thesis. The terminology is 

organized by technologies, i.e., terminology for component systems, terminology for 

distributed systems, and terminology for web systems. 

2.2.1 Component Terminology 

Current component systems comprise similar artifacts but use different terminology. 

To establish a common language, the following sections explain the terminology from 

the literature and compare it to the terminology of current component systems. 

Software Component 

Heineman and Councill [2001], Weinreich and Sametinger [2001], as well as Szyperski  

[2002], unanimously define a software component as a software element that conforms 

to the standards specified by a component model with the following characteristics: it 

describes its functionality through clearly defined interfaces; it is loosely coupled to 
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other components, i.e., it identifies other components by their interfaces but not by 

their implementation; the implementation is hidden, i.e., it implements an abstract data 

structure or an abstract data type; it is designed and packaged for third-party reuse, 

i.e., it can be independently deployed and composed with other components without 

modification. 

According to Weinreich and Sametinger [2001] components can be implemented in an 

object-oriented way, either as a single class or by multiple classes, or in a non-object-

oriented (procedural) way. For object-oriented systems, they define the term component 

instance as an object that is an instantiated component. 

Component Model 

A component model defines a set of standards for component implementation, namely 

the interface, metadata, interaction, and composition standard. The interface standard 

declares how components need to declare their provided and required functionality. 

The metadata standard describes how metadata such as the name of a component can 

be specified and obtained. The interaction standard specifies how components can 

communicate with each other. The composition standard defines how components can 

be composed to create a larger structure and how components can be substituted. 

Furthermore, a component model defines how components must be packaged so that 

they can be deployed independently; it defines the executable software elements that 

are required to execute the components conforming to the model as well as the coding 

conventions and documentation standards.  

The following sections explain the standards of a component model in more detail, 

according to Heineman and Councill [2001] and Weinreich and Sametinger [2001]. 

Interface Standard 

The interface standard defines how a component's behavior can be described by means 

of interfaces, non-functional specifications, and documentation. The elements of an 

interface are the names of operations, their parameters with valid parameter types, as 

well as optionally other elements, such as preconditions, postconditions, exceptions, 

and attributes that specify further interoperability constraints, e.g., a thread model or 

remoting capabilities. Many component models use an interface definition language 

(IDL) to describe interfaces and their elements. Interfaces serve as a contract between 

components, i.e., components use interfaces to specify the required and provided 

services. Components may specify required interfaces as mandatory, i.e., if this 

requirement is unsatisfied, the component itself may not be able to provide certain 

services. A component model can require that every component must provide a set of 

specific interfaces in order to conform to the component model. 

Metadata Standard 

The metadata standard defines how information about interfaces, components, and 

their relationships is specified and how it can be obtained. The metadata of 
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components is used for composition, scripting and reflection. Typically a metadata 

standard includes a naming standard that defines a schema for globally unique names 

for interfaces and components. Many component systems use, for example, globally 

unique identifiers (GUID) or hierarchical namespaces to avoid name clashes. 

Interaction Standard 

The interaction standard (also referred to as interoperability standard) specifies how 

two or more components can communicate and exchange data, e.g., it specifies the 

calling conventions, or how control is shared in communication channels, either within 

a single process, between processes on a single computer, or across multiple computers 

on a network. For distributed communication, the interaction standard defines 

common data representation and invocation semantics. It may standardize network 

protocols used for communication among components, e.g., SOAP, Remote Method 

Invocation (RMI), or Internet Inter-Orb Protocol (IIOP). Furthermore, the interaction 

standard covers a component’s context dependencies, e.g., dependencies on other 

components, the operating system, or hardware resources such as a network 

connection. 

Composition Standard 

The composition standard defines how components can be composed and how already 

composed components can be replaced by other components. Composition is the 

process of combining two or more components so that components can interact with 

each other. Component reconfiguration means to recompose a program by adding, 

deleting, or replacing a component. Both, composition and reconfiguration can be done 

using general-purpose programming languages, scripting or glue languages, visual 

programming, composition tools, or component infrastructures. 

Packaging and Deployment Standard 

The packaging and deployment standard defines the structure and semantics for 

deployment descriptions. A component is deployed when it is installed and configured 

in a component infrastructure. It must be packaged with all required artifacts that will 

not exist in the component infrastructure, i.e., the code, configuration data, other 

components, and additional resources. The deployment description lists the contents of 

the package. 

Component Model Implementation 

The component model implementation comprises executable software elements that 

are required for execution of components that conform to a component model. It is 

typically a thin layer on the top of an operating system and must provide dedicated 

services for retrieving the metadata of components and registering the interfaces of 

components in an interface repository. For component development, it must provide 

tools for defining interfaces (e.g., an IDL compiler), for defining metadata, and for 

packaging components. 
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Customization 

Customization means that a consumer adapts a component prior to its installation or 

use. Components can be customized, for example, with a deployment tool that either 

changes the component’s metadata or with interfaces, which the component offers for 

this purpose. [Weinreich and Sametinger, 2001] 

Extension, Host, and Contributor 

Wolfinger [2010] defines an extension as a component that can be plugged into some 

other component thus extending the other component's behavior. An extension can be 

a host, a contributor, or both. An extension that integrates another extension (i.e., 

requests a service) is called a host, and the extension that is integrated (i.e., provides a 

service) is called a contributor. 

Composition Model 

Wolfinger [2010] defines the composition model as the subset of the component model 

that is responsible for discovering components, composing them, and maintaining 

them in the composition state. Discovery is the process that detects components and 

retrieves their metadata. Composition is the process that connects components, thereby 

matching requirements and provisions. This can be done automatically, i.e., the 

composition model defines how it automatically connects components based on the 

request specified in the metadata, or it can be done programmatically, i.e., the hosts use 

a composition API that is specified in the component model to find and connect their 

contributors manually. The composition state holds the instantiated components as well 

as their connections. 

2.2.2 Distribution Terminology 

The following sections define the terminology used in distributed systems. This 

terminology is used to describe the capabilities of existing distribution technologies in 

the following section and to describe Plux for Web. 

Distributed System 

According to Tanenbaum and Steen [2007] a distributed system is a collection of 

independent computers that appear to the user of the system as a single computer, i.e., 

although the computers are autonomous hardware entities, the software makes them 

appear as a single computer to the user. 

Server / Client 

In a distributed a system, computers can have different roles, i.e., a computer can either 

act as a server or as a client. A server is a computer, which provides a certain service for 

one or multiple clients. A client is a computer, which uses a service provided by a 

server. One computer can have both roles at a time, i.e., it can act both as a server and 
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as a client. The interaction between a server and a client is called request-reply 

interaction. [Tanenbaum and Van Steen, 2007] 

Distribution Transparency 

Even though a distributed system is executed on multiple computers, it appears to 

users as if it would be executed on a single computer. Distribution transparency means 

that the distribution is hidden from the developer, too. It can be achieved on different 

levels: if a distributed system is location transparent, developers need not care about 

where the remote computer is actually located; if it is access transparent, developers 

can access services in a uniform way, regardless of whether the service is local or 

remote; if it is implementation transparent, local and remote services can be 

implemented in the same way, i.e., no further programming effort is necessary to make 

a service remotely accessible. 

Distributed Object, Remote Object, Serialized Object 

In a program that is implemented in an object-oriented manner data and operations are 

encapsulated in objects, and the operations are made accessible via interfaces. In a 

distributed system, some objects are distributed, i.e., they do not reside on a single 

computer, but are transmitted from one computer to another. Distributed objects can 

either distribute only their interface or both their state and their interface. An object 

which only distributes its interfaces is called a remote object. With a remote object the 

distribution aspects are hidden behind the interface, i.e., its implementation resides on 

the computer where the remote object lives, while other computers make calls through 

the distributed interface and calls are forwarded to the original object. An object that 

distributes its state as well as its interfaces is called a serialized object. With a serialized 

object the state is copied from the original computer to the remote computer. Method 

calls on the remote computer are executed locally on the copied object. As changes of 

the object’s state do not affect the original object, the developer must synchronize the 

changes back to the original object. [Tanenbaum and Van Steen, 2007] 

Object Data Synchronization 

The state of serialized objects is replicated on multiple computers. Object data 

synchronization is the mechanism that keeps the state of a serialized object consistent 

across multiple computers. On each modification of an object’s state, object data 

synchronization transmits the changes to all other computers and updates the object 

states there. 

Object Reference 

An object reference identifies a distributed object. It typically includes the network 

address of the computer where the object resides and an object identifier. Object 

references allow clients to bind to distributed objects. [Tanenbaum and Van 

Steen, 2007] 
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Reference Identity 

On remote method calls, reference identity ensures that object references which are 

identical in the original environment of the object, are also identical in the remote 

environment, i.e., if an object is transferred to a remote environment multiple times, the 

remote environment always gets a reference to the same object. Vice-versa, if the object 

is transferred back from a remote environment to the original environment, the 

reference to the original object is used in the original environment. Depending on the 

system, this can be ensured for remote objects, for serialized objects, or for both. 

Lifetime Management 

Lifetime management constitutes policies for creation and destruction of distributed 

objects. Simple approaches are, for example, to create an instance of a distributed object 

for each call and destroy it after the result is passed back to the caller, or to apply the 

singleton pattern to a service and create a single shared object at startup time and reuse 

the same shared object for each call until the end of the program. If the distributed 

system supports sessions, shared objects can be used within a session to provide a 

separate object per user session. 

If the lifetime management pursues the same lifetime policies for distributed objects as 

for local objects, implementation transparency can be achieved. For example, if 

reference counting is used for local objects, distributed reference counting must be 

used for distributed objects; if local objects are garbage-collected, distributed garbage 

collection must collect distributed objects. To connect reference counting or garbage 

collection across multiple computers requires coordination, e.g., by periodically 

pinging other computers whether a remote object is still in use. 

Thread Management 

Thread management constitutes policies with respect to which threads are used for 

executing the methods of distributed objects. Simple approaches are, for example, 

using a single thread to execute all method calls; assigning a dedicated thread for every 

distributed object; or acquiring a new thread from a thread pool on every method call. 

For implementation transparency, the thread management must ensure the same 

threading policy for local method calls as for remote method calls. [Tanenbaum and 

Van Steen, 2007] 

Object Server 

An object server maintains object references and the corresponding instances of 

distributed objects. It manages the life-cycle of distributed objects and the threading of 

method calls to them. Service providers register their distributed objects in the object 

server, clients retrieve them. [Tanenbaum and Van Steen, 2007] 
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Fault Tolerance 

As network communication is unreliable, remote method calls are more prone to 

failures than local method calls. Fault tolerance is the characteristic by which a system 

can mask the occurrence and recovery from failures. A system is fault tolerant if it can 

continue to operate in the presence of failures. For example, a fault tolerant system can 

reconnect to a remote computer after a previous failure and complete a transaction. 

[Tanenbaum and Van Steen, 2007]  

Security 

Security in distributed systems concerns authorization as well as secure 

communication between remote computers. The communication is secure if the sender 

and the receiver communicate through a secure channel so that only they can access 

the transferred messages. Authorization ensures that a remote computer gets only 

those access rights to which it is entitled. [Tanenbaum and Van Steen, 2007] 

2.2.3 Web Terminology 

The following sections define the terminology used in web applications. This 

terminology is used to describe the capabilities of existing web technologies in the 

following section and to describe Plux for Web. 

Web application 

A web application is a program that is executed on a web server and accessed by a web 

browser on a user's computer. The user opens a web application by entering the web 

address of the application in the web browser. The web browser generates a request 

(see below) and sends it to the web server. The web server processes the request and 

generates a response (see below), which contains HTML (and possibly JavasScript) that 

is sent back to the web browser to be rendered there. Web applications can be accessed 

by multiple users from different computers at the same time. 

Request 

A request is a message sent from a web browser to a web server containing a command 

with parameters to be executed by the web application as well as additional 

information, such as user identity or browser information. A request is the input that is 

processed by a web application. 

Response 

A response is a message that is produced by a web server as an answer for a request. 

The response contains the result that was generated from the web application and 

contains HTML (and possibly JavaScript), which is sent back to the client-side web 

browser to be rendered there. 
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Round Trip 

A round trip is the sequence of sending a request to the server, processing it by the 

server-side web application, and replying the response back to the web browser. 

Round trips are triggered by users of a web application either when they enter a web 

address in the web browser or when they click on a button or on a link. Round trips 

can also be triggered by client-side script code that is executed by the web browser. 

Session 

A session is an interaction sequence between a web browser and a web application 

with related round trips. In principle, every round trip is independent from other 

round trips. However, web servers can assign consecutive round trips to sessions, in 

order to allow web applications to maintain individual application state per user. 

2.3 Evaluation of Existing Technologies 

Web applications that are component-based, customizable per user, and distributed 

across multiple computers, require the following capabilities: componentization, 

customization, distribution, multi-user, and web support. Existing systems typically 

cover only a subset of these capabilities. Component systems, for example, cover 

componentization and customization. However, they do not offer multi-user support. 

Web systems, on the other hand, cover multi-user support and web support, but do not 

offer customization. Section 2.3.1 describes the relevant capabilities in detail, 

Section 2.3.2 evaluates which capabilities are supported by existing technologies, and 

Section 2.3.3 addresses their remaining deficiencies for building component-based 

distributed multi-user web applications. 

2.3.1 Relevant Capabilities 

This section dissects the relevant capabilities into individual features, and describes 

why those capabilities are useful for building user-customizable web applications that 

can be distributed across multiple computers. 

Customization Capabilities 

Customization means to adapt features of an application to meet specific requirements 

of individual users. Depending on the capabilities of a system, different stakeholders 

can customize an application: the developer can always customize it, because he can 

modify the source code and recompile it; the deployer can customize it, if the system is 

configurable, e.g., by using a configuration file; and the end user can customize it, if the 

system provides a configuration mechanism that is suited for end users, e.g., in the 

user interface. 

A web application follows the client-server paradigm, i.e., the application is executed 

on a server and is accessed through a web browser that is executed on the client. Thus 
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customization is feasible on the server or on the client. Depending on a system's 

customization capabilities, the application can be customized on the server, on the 

client, or on both. 

A web application can be customized either by changing its configuration (e.g., by 

changing a value in a configuration file) or by modifying its composition (e.g., by 

replacing a component), if it is component-based. Typically, composition offers more 

flexibility than configuration, because it allows a component to be completely replaced 

with another one or to be extended by new components. 

Depending on its architecture, a web application can be customized in all parts or only 

in predefined parts. With a component-based architecture, the application can be 

customized in all parts that are implemented as a component. In contrast, with a 

monolithic architecture, the developer needs to explicitly define customization points 

to make a certain part of the application customizable. 

Customization can take place at different times during the life of a web application: it 

can happen at development time, at deployment time, at startup time, and at run time. The 

later the customization should be performed, the more flexible the mechanism must be. 

Of course, the developer can customize the web application by modifying the source 

code at development time. At deployment time, the administrator can only customize 

the web application, if the developer provides a mechanism for that, e.g., a setup 

routine with customization options. At startup time, the web application can be 

customized, if it retrieves configuration from a source that can be modified by the 

administrator, e.g., a configuration file. Customizing a web application at run time 

demands the most flexible mechanism, because the web application must react to 

configuration changes while it is running and must adapt itself accordingly. 

Distribution Capabilities 

Distribution means that a web application is executed on multiple computers, while it 

appears to the user as if it were executed on a single computer. Depending on the 

distribution capabilities of a system, the developer must consider distribution to a less 

or greater extent, e.g., he might have to implement remote components in a different 

way than local components. The more a system abstracts distribution, the more 

reusable the components can be, because distribution aspects do not have to be 

programmed, but are provided by the system. 

A web application can be distributed across multiple server computers and possibly even 

across client computers. In the web context, we define a web client as a computer that 

requires only a web browser as an infrastructure. Following that definition, we 

distinguish between systems that can distribute the web application only across server 

computers (e.g., running a web server and a database server) and systems where parts 

of the web application can also run on the web client. 

A distributed system can provide multiple layers of transparency: location transparency, 

access transparency, and implementation transparency. The more transparent a system is, 
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the less distribution must be considered by the developer: if a system is location 

transparent, the developer can ignore on which computer a component is executed; if it 

is access transparent, he can do local and remote calls uniformly; and if it is 

implementation transparent, he can implement local and remote code in the same way. 

A distributed system can provide more or less support for managing the lifetime of 

distributed objects. Distributed objects occur either as dedicated service objects or as 

general objects that are passed as arguments. In general, the more capabilities a system 

provides, the less a developer must do. We distinguish the following levels of lifetime 

management: with manual lifetime management, the developer himself must implement 

a mechanism for creating, retaining, and releasing objects; with semi-automatic lifetime 

management, the system provides support for such a mechanism (e.g., reference 

counting), which the developer can use; with automatic lifetime management, the system 

has such a mechanism (e.g., distributed garbage collection) built-in and the developer 

does not need to care. 

The fact that a distributed system is executed on multiple computers, but should 

appear as if it were executed on a single computer, requires further support, if objects 

are passed across computer boundaries. An object that is transmitted from one 

computer to another exists twice. However, it should appear as the same object on both 

computers. One transparency aspect is reference identity, i.e., if the same object is 

transmitted twice, it must have the same reference on the target computer both times. 

We distinguish systems by their support for reference identity of dedicated service 

components, remote objects, and serialized objects. A further transparency aspect is data 

synchronization of transmitted objects. Without synchronization, a change to a 

transmitted object on the target computer, does not affect the original object on the 

source computer. Thus changes need to be transmitted back to the source computer 

manually. Systems can support synchronization in two ways: either a proxy is 

transmitted as a remote object that forwards calls immediately to the original object on 

the source computer and thus changes affect the original object at once; or the object is 

serialized to the target computer and changes are automatically synchronized back to 

the original object by the system. 

As distributed systems are executed on multiple computers, already a single-threaded 

application is executed by multiple threads, namely by a separate thread on each 

computer. However, for implementation transparency, it should appear single-

threaded and the thread management must ensure that only one computer is active at a 

time, i.e., that only one thread is executed at a time, and that each thread makes 

synchronous calls. If repeated calls are made from the same thread on the source 

computer, they must all execute on the same thread of the target computer, e.g., to 

support thread-local data. Furthermore, if remote objects are passed across computer 

boundaries, calls coming back from the remote side must be dispatched in the caller’s 

original thread. For multi-threaded applications, the thread management must provide 

the same support as for single-threaded applications, but for each thread individually 

so that each thread on a computer has a counterpart on the other computers. 
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In contrast to applications that are installed on a single computer, for distributed 

systems a decision has to be made as on which computer the components should be 

installed. Depending on the system, this decision can be made either by stakeholders, 

i.e., administrators or end users, or by the infrastructure of a distributed system. 

Administrators can decide whether they want to deploy a component to one of the 

server computers or to one or several client computers. End users can decide whether 

to install a user-specific component just on their own client computer (if they need it 

just locally) or to install it on the server (if they also need to use it from other client 

computers). For components, which are installed on the server, but should be executed 

on the client computer (e.g., rich user interface components), the infrastructure is 

responsible for downloading them to clients on demand. 

The support for transparency in a distributed system determines how freely parts can 

be distributed across computers: with full transparency, any customizable part can be 

installed on any computer; with limited transparency, defined parts that belong to the 

same subsystem must be installed on the same computer. 

In distributed systems with support for interoperability, components can be 

implemented in different programming languages (e.g., C++, Java, or C#) and still be 

integrated into a seamless web application. 

Multi-user Capabilities 

A multi-user web application is a program that is executed on one or multiple 

computers and is shared by multiple concurrent users, where each user has its own 

data that is separated from the data of other users. Furthermore, a multi-user web 

application can appear or behave differently for each user. 

Data, appearance, and behavior can be influenced by user-specific state, user-specific 

configuration, or user-specific composition. The user-specific state contains the user’s data 

(e.g., the shopping cart in a web shop). It can change the appearance (e.g., highlighting 

items with long shipping time), and it can change the behavior (e.g., paging depending 

on the number of items in the shopping cart). User-specific configuration can change 

the appearance (e.g., display more or less detailed item descriptions) or change the 

behavior (e.g., 1-click-checkout vs. checkout with explicit confirmation). User-specific 

composition can change the appearance structurally (e.g., grid control instead of a list 

control) or change the behavior (e.g., modified or additional business logic). 

Customizations in a multi-user web application can affect either individual users or 

groups of users. A user can belong to multiple groups and user groups can be organized 

hierarchically. With hierarchical user groups, a group can inherit the customizations from 

one or multiple parent groups, i.e., the groups are organized as a directed acyclic 

graph, where each group inherits the customizations of its parent groups. 

A multi-user web application can be customized (i.e., its appearance or behavior can be 

changed) by the following stakeholders: the developer can program a customization 

(e.g., to differentiate between different world regions); the administrator can customize 
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the configuration or deploy different components for users or user groups (e.g., to 

differentiate between managers and workers); and the end user can customize his 

configuration or deploy private components to his composition (e.g., to include his 

personal address book). 

Web Capabilities 

A web application is characterized by the facts that it is executed on a web server, that 

clients access it with a web browser, and that is supports multiple concurrent clients. 

Web applications are based on the request-response pattern, i.e., the web browser 

sends a request message to the web server, the web server forwards the request to the 

web application, the web application processes the request and generates a response 

message, and finally the web server sends the response back to web browser. Web 

support means to provide the capabilities that are required to implement a web 

application. 

The client-side web browser must communicate with the web application. Without 

communication support, a developer must encode messages before they are sent, and 

decode them when they are received. With communication support, the web system 

provides abstract means for encoding and decoding, i.e., the developer can handle 

commands to the web application in a similar way as method calls. 

When the web application processes a request, the developer needs to retrieve the 

commands from the request. Without parameter support the developer needs to analyze 

the request message manually. With parameter support, the web system provides the 

command in a structured manner. 

The response of a web application can contain static or dynamically generated content. 

Without support for dynamic content, the developer must insert the dynamic elements 

into the HTML programmatically. If the web system supports templates, the developer 

can create HTML templates with placeholders, which are replaced by the dynamic 

content. If the web system supports embedded code, the developer can embed method 

calls into the HTML, which insert the dynamic content when they are evaluated. If the 

web system supports web controls, the HTML programming logic is encapsulated in 

objects; the developer can use an object-oriented programming style, i.e., set property 

values, call methods, and listen to events; and the web system automatically renders 

the HTML and generates JavaScript from the web controls. 

As web applications support multiple users concurrently, they must handle multiple 

requests at the same time. In a multi-threaded web system, each request is executed in 

a separate thread. Without threading support, the developer must manage threads 

manually, i.e., start and stop the threads, and manage them efficiently, e.g., by using a 

thread pool. If threading support is available, the web system handles the thread 

management. 

In principle, web applications are stateless, i.e., they process every request 

independently. However, typical web applications maintain a state for each user, i.e., 
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they keep user data between consecutive requests, e.g., when the user collects multiple 

items in a shopping cart. Web systems maintain user states in sessions. A session keeps 

track of a user’s activity and is maintained as long as the user interacts with the web 

application or exceeds a specified timeout. A web system can store session data in main 

memory, persist it to non-volatile storage (e.g., to a disk or to a database), or even move it 

to other computers within a server farm, to balance the load. 

2.3.2 Capabilities of Existing Technologies 

This section analyzes current technologies that are relevant for building component-

based distributed multi-user web applications. We analyze and compare the 

technologies with regard to the required capabilities described in the previous section. 

Figure 2.1 on page 29 and 30 shows the capabilities provided by existing technologies, 

while the following subsections discuss them in detail.  

Common Object Request Broker (CORBA) 

CORBA [OMG, 2012] is a language-independent component model that isolates service 

providers from service requestors by encapsulating interfaces. Interfaces of 

components (object implementations) are specified in the CORBA Interface Description 

Language (IDL). The contributors (providers) are stored in a repository and the hosts 

(requestors/clients) retrieve their contributors using an object request broker (ORB). An 

application can be customized by modifying the composition in all parts where 

CORBA components are used, at development time as well as at deployment time, i.e., 

the developer can change the source code and the administrator can configure the 



State of the Art 

30 

repository. End user customization capabilities are not provided. All components of a 

web application built with CORBA are executed on the server exclusively, therefore 

client-side customization cannot be provided. 

Figure 2.1: Capabilities of existing technologies 
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The ORB core generates skeletons and stubs for components from the IDL descriptions 

and handles communication between components that can be distributed across 

multiple computers. The hosts use Object Adapters to access services from the ORB 

and get support for location transparency and access transparency. The life cycle of 

services is managed manually by the hosts. The lifetime management for objects that 

are transferred as arguments is depending on the technology of the implementation of 

CORBA, e.g., Java supports automatic lifetime management, whereas C++ supports 

semi-automatic lifetime management with reference counting. 

CORBA supports reference identity for services, distinguishing between CORBA 

objects and instances of value types. A  CORBA object implements an IDL interface 

and is registered with the ORB. Such objects can be passed as reference parameters. 

How other objects (value type objects) are passed, depends on the receiver. If the 

receiver is a CORBA object, services are passed by reference, other objects by value. If 

the receiver is a value type object, the semantics of parameter passing depends to the 

programming language in which the ORB is implemented. A CORBA object can be 

assigned to a computer by registering its Object Reference on the computer’s ORB. 

Thus the distribution of CORBA objects can be controlled by administrators, but not by 

end users. CORBA objects stay on the computer where they are registered; the 

infrastructure does not redistribute objects to other computers automatically.  

CORBA does not target web applications and provides no multi-user or web support. 

Component Object Model (COM) 

COM [Microsoft, 2012c] is a binary component standard that is available on Windows 

operating systems. COM components can be implemented in multiple languages, e.g., 

in C/C++, Visual Basic, Delphi, and C#. Interfaces of components are specified in the 

Microsoft Interface Description Language (MIDL). The contributors (servers) are stored 

in the Windows Registry and the hosts (clients) retrieve them using the COM API. As 

COM and CORBA are conceptually similar, their customization options are the same. 

The Distributed Component Object Model (DCOM) extends COM to support 

communication across computer boundaries. The distribution support of DCOM goes 

beyond CORBA with the following capabilities: 

Components cannot only interact with server-side components, but also with 

components that are executed on the client. Such client-side components are 

implemented with the ActiveX technology [Microsoft, 1996]. ActiveX components are 

stored on the server and downloaded to the client on demand. Typical ActiveX 

components are used to embed rich content into web applications, e.g., video, audio, or 

PDF documents. 

COM supports life-cycle management with reference counting, provided through the 

AddRef and Release methods in the IUnkown interface, which must be provided by all 

components. Reference counting is used for contributors (servers) as well as for 

parameter values. 
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COM objects are organized in apartments that provide thread management. An 

apartment controls how many threads are allowed to enter concurrently. In a single-

threaded apartment (STA) components are executed by a single dedicated thread; in a 

multi-threaded apartment (MTA) a set of dedicated threads execute components, thus 

the objects must do their own synchronization; in a thread-neutral apartment (NTA) 

arbitrary threads can enter and execute. A process can contain STA, MTA, and NTA 

objects, which can interact with each other. 

COM does not provide any multi-user or web support. 

Open Services Gateway initative (OSGi) 

The Open Service Gateway initiative (OSGi) [OSGi Alliance, 2012a] is a Java-based 

component standard. Interfaces of components are specified in Java and components 

are called bundles. Contributors register their services in the Service Registry where 

hosts can retrieve them. OSGi provides the same customization options as CORBA and 

COM, but adds additional support for customization at startup time and at run time. 

Services can be added and removed in the service registry while an application is 

running; upon changes the service registry notifies hosts with events. 

Similar to the ORB in CORBA, the OSGi Remote Services standard [OSGi 

Alliance, 2012b] allows building a distributed service registry. In order to make a 

service available for remote clients, a distribution provider creates an endpoint from the 

interface of the registered service on the contributor side. The endpoint handles the 

remote communication, e.g., as a web service or with Java RMI. To import the service 

on the host side, a distribution provider creates a proxy and registers it in the service 

registry of the host. Thus a host can retrieve remote services from the service registry in 

the same way as local services, i.e., remote services are location transparent as well as 

access transparent. 

Similar to COM, OSGi uses semi-automatic life-cycle management for services (with 

the getService and ungetService APIs), but unlike COM, OSGi uses garbage collection of 

Java and thus the life-cycle management for arguments is automatic. 

The distribution capabilities (thread management, reference semantics, and 

synchronization) are similar to CORBA. However, as a distribution provider for an 

OSGi service can create an endpoint that supports web services for communication, the 

service is interoperable with other platforms that are not Java-based. 

OSGi does not provide multi-user or web support. 

SOFA Component Model 

SOFA [Hnetynka and Plasil, 2006; Bures et al., 2006; Bures et al., 2007] is a component 

model developed at the Charles University in Prague. The component model is 

hierarchical as it distinguishes between primitive and composite components. 

Primitive components are programmed, whereas composite components are 

declaratively composed from other primitive or composite components. 
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Components are specified using the Meta-Object Facility (MOF) standard [OMG, 2006] 

and communicate with each other using connectors. Connectors can use different 

communication technologies such as procedure calls, messaging, streaming, or 

communication via shared memory.  

The SOFA runtime environment (SOFAnode) consists of a repository, which stores the 

meta-data of components and the components' implementations, and it contains a 

number of component containers, which provide the functionality for executing 

components. Component containers are called deployment docks and can be 

distributed across multiple computers. Thus SOFA supports component distribution. 

Furthermore, SOFA supports dynamic reconfiguration by adding, removing, or 

replacing components at run time. Even though the SOFA runtime is implemented in 

Java, its concepts are language-independent and can be implemented in other 

programming languages too. 

Sofa does not provide multi-user or web support. 

Managed Extensibility Framework (MEF) 

MEF [Microsoft, 2010] is a component model based on .NET. Interfaces are specified in 

a .NET language, such as C# or Visual Basic.NET. Hosts and contributors (called parts) 

declare their provided interfaces (exports) and requested interfaces (imports) using 

metadata. 

The components’ metadata are retrieved by a discoverer (catalog) and stored in a 

registry (container). The MEF composition engine matches provisions and requests 

automatically to assemble an application. MEF’s customization options are similar to 

those of OSGi, however, with MEF the end user can also add custom components, e.g., 

by copying component files to a folder in the file system. Such components are 

discovered by the catalog and composed by the composition engine. 

MEF targets desktop applications on a single computer, e.g., Microsoft Visual Studio, 

and thus neither provides distribution support, multi-user support, or web support. 

Plux 

The following description of Plux covers the state of Plux before this thesis 

[Wolfinger, 2010]. As Plux initially targeted only desktop applications, it did not 

provide distribution, multi-user, or web support. Therefore, this description focuses on 

the customization capabilities of Plux only. 

Plux is a component model for dynamic plug-and-play composition. The composition 

is done by the infrastructure and not by the components. It is plug-and-play because it 

happens automatically. Components (extensions) declare their provisions (plugs) and 

requests (slots) using metadata. Plux retrieves these metadata, matches provisions and 

requests, and connects contributors to matching hosts. The composition is dynamic 

because components can be added and removed at run time, i.e., Plux automatically 

recomposes the application without restarting it. In contrast to any other component 
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platform, Plux keeps track of which hosts use which contributors, i.e., it maintains a 

composition state that holds all extension instances and their connections. Hosts can 

retrieve their contributors from the composition state and can modify the composition 

using the Plux composition API. The customization capabilities of Plux are identical to 

those of MEF, but as Plux components contain configuration metadata in addition to 

composition metadata, Plux applications can also be customized by configuration. 

Eclipse with Remote Application Platform (RAP) 

Eclipse [Eclipse, 2006] is a component platform based on Java. Interfaces of 

components are specified in Java. Components are called extensions and connect to 

other extensions via extension points. Contributors register their services in the Eclipse 

Registry from where hosts retrieve them. Eclipse provides the same customization 

capabilities as CORBA, COM, and OSGi. In addition to that, Eclipse applications can be 

customized by configuration, i.e., by changing parameter values in the XML metadata 

of an extension. 

Eclipse targets only desktop applications, but in combination with the Remote 

Application Platform (RAP) [RAP, 2012], developers can generate web applications 

from Eclipse desktop applications. RAP generates web controls with HTML and 

JavaScript from Eclipse SWT widgets. The web controls are executed on the client and 

communicate with business logic on the server. The distribution is limited as only the 

user interface is transferred to the client (automatically by the infrastructure). Other 

parts of the web application cannot be distributed. 

As Eclipse with RAP is hosted in a Java EE server, the multi-user and web support is 

similar to that of the Java Enterprise Edition (see below). However, as in RAP user 

interfaces are implemented by the use of SWT controls, web page templates are not 

available. 

Browser Plugins 

A Browser Plugin [NPAPI, 2012 and Oliphant, 1996] is an extension that is installed in 

the web browser on the client. The plugin can modify a web application’s user 

interface or display rich content, such as Adobe Flash animations or PDF documents. 

However, browser plugins only extend the functionality of a web browser, but do not 

extend the web application, which is accessed via the browser. Furthermore, browser 

plugins are leafs from the perspective of composition and cannot be extended 

themselves by additional plugins. 

With Browser Plugins only the end user can customize the web application, and it can 

only be customized on the client. However, unlike in all other web technologies, the 

developer and administrator of a web application have no influence on which plugins 

are installed on the client. 

As Browser Plugins are always executed in the web browser on the client, they have no 

distribution, multi-user, or web support. 
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Sockets 

Sockets [Tanenbaum and Van Steen, 2007 pages 141-142] are a communication 

mechanism between processes on one or several computers. They are communication 

endpoints that communicate by sending and receiving byte streams, usually based on 

the TCP protocol [Postel, 1981] or the UDP protocol [Postel, 1980]. Programs must 

serialize and deserialize their data in order to transmit them via sockets. 

Developers can customize an application in defined parts, by connecting these parts to 

different sockets. Sockets can be used to distribute parts of a web application across 

multiple servers and even to a web client using web sockets. As the usage of a socket is 

independent of the other socket's location, distribution is location transparent. 

In socket-based web applications, only parts that actually use a socket can be 

distributed. Other parts that use local procedure calls (e.g., between components) 

cannot be distributed. Thus, with sockets only defined parts of the application can be 

distributed. 

Sockets are a platform-independent mechanism, i.e., parts of socket-based web 

applications can be distributed across different platforms. 

As sockets are only a means of communication, they do not provide multi-user or web 

support. 

Common Gateway Interface (CGI) 

The Common Gateway Interface [Robinson and Coar, 2004] is a standard for 

dynamically generated web pages. A web server with CGI starts a new process for 

each request, which takes the request’s parameters as input and generates the response 

message as output. A CGI web application can be customized in defined parts through 

composition on the web server. The administrator can modify the mapping of URLs 

and CGI scripts at startup time. CGI does not provide support for distribution or 

multiple users. However it provides web support. Depending on a request’s URL, the 

web server automatically calls the CGI script that is assigned in the configuration. Thus 

the CGI script does not have to handle network communication but can simply read 

the input from the standard input stream and write the output to the standard output 

stream. 

Server Side Includes (SSI) 

Server Side Includes [The Apache Software Foundation, 2013] are a standard for simple 

web templates. For each request SSI replaces placeholders in the web page template 

with values from environment variables or simple library functions, e.g., the current 

date and time. An SSI web application can be customized in the same way as CGI. In 

addition to that, the administrator can customize by configuration, i.e., by changing the 

web page templates at deployment time and by setting the environment variables at 

startup time. The web support of SSI goes beyond CGI, because of the web page 

templates. 



State of the Art 

36 

Java Servlets 

Java Servlets [Mordani, 2009] are a standard for dynamically generated web pages 

(similar to CGI) with scripts that are implemented in Java. Servlets can be customized 

exactly in the same way as CGI. Java Servlets do not support distribution. However 

they provide multi-user and web support. In contrast to CGI and SSI, which are 

stateless, Servlets can keep a user state between consecutive requests in a session. 

Furthermore, Servlets support HTTP parameters that can be retrieved uniformly, 

regardless of whether they are passed in the URL or in the message body. The user 

state of a session can be kept in main memory, on disk, or even on multiple servers to 

balance the load. 

Server-side Scripting Languages 

PHP: Hypertext Preprocessor (PHP) [The PHP Group, 2012] is a server-side scripting 

language for dynamic web pages that are rendered from web page templates. In PHP 

the web page templates can contain script code that is evaluated for each request and 

the results replace the placeholders in the template. The customization options of PHP 

are the same as in SSI. PHP does not support distribution. The multi-user and web 

support in PHP is similar to that of Java Servlets, plus the support for web page 

templates. 

Active Server Pages (ASP) [Microsoft, 2012j] and Java Server Pages (JSP) 

[Delisle et al., 2006] are further representatives of server-side scripting languages with 

similar capabilities as PHP. 

Java Enterprise Edition / ASP.NET 

Java Enterprise Edition (Java EE) [DeMichiel and Shannon, 2013] is a standard for a 

web application framework. In contrast to server-side scripting languages, the 

business-logic is not embedded in the web page templates, but encapsulated into 

business-logic components (Enterprise Beans). Moreover, the user interface is 

encapsulated in web controls (JavaServer Faces [Burns, 2013b]). Web controls are 

reusable Java components that can be programmed in an object-oriented manner just 

like business-logic components. Web controls are embedded into web pages and are 

dynamically rendered into HTML and Javascript on each request.  

The customization capabilities for Java EE web applications are similar to those of 

server-side scripting languages.  

Java EE provides support for distribution of defined parts across servers (e.g., the 

database server can run on a different computer than the web server) or even across 

servers and clients (e.g., web controls on the client can connect to the server application 

using AJAX). As distributed web components are implemented with RMI or web 

services, they are location transparent and access transparent, i.e., developers do not 

have to care on which computer a component is located, and local components can be 

accessed in the same way as remote components. The lifetime management of service 
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objects and argument objects is done automatically in Java EE. If web services are used 

for distribution, Java EE is interoperable with other platforms. 

The multi-user support and the web support of Java EE is the same as in Java Servlets, 

as Java Servlets are part of Java EE. In addition to that, Java EE supports web page 

templates (JavaServer Pages) and web controls (JavaServer Faces). 

ASP.NET [Microsoft, 2012k] is a web application framework for the .NET platform 

with essentially the same capabilities as Java EE. However, the distribution support in 

ASP.NET (.NET Remoting) goes beyond Java EE (Java RMI) with respect to reference 

identity and object synchronization.On the other hand, .NET Remoting is not 

interoperable, i.e., it is limited to the .NET platform, and it requires that all remote 

objects inherit a special base class, whereas in Java RMI it is sufficient to implement an 

interface. 

Portals 

A Portal is a web-based application that is composed from multiple user interface parts 

which are embedded from other web sites. Portals are used to aggregate web content 

from different sources for personalized web sites. Portlets [Hepper, 2008] is a 

standardized Java technology for implementing Portals. A Portlet is a pluggable user 

interface component. It processes requests and generates dynamic HTML and 

JavaScript content. A Portlet container runs Portlets, i.e., it provides services such as 

lifetime management, persistence, and preferences for Portlets. The web page of a 

Portal is generated from all Portlets in the container. 

The customization options of Portals are similar to those of Eclipse with RAP, but with 

two differences: Portals can only be customized in defined parts, i.e., Portlets can be 

added, arranged, and removed. On the other hand, a Portal can also be customized by 

end users, which Eclipse with RAP cannot. 

Portlets can be distributed across multiple web servers. The distribution of Portlets is 

controlled by the administrator, as he installs the Portlet on a web server. Portlets are 

based on open web technologies, such as HTML and JavaScript, and therefore are 

interoperable across different platforms. 

Portlets provide full multi-user support, i.e., user-specific state, configuration and 

composition (for users, groups, and hierarchical groups), as well as user-specific 

customizability by developers, administrators, and end users. 

Portlets provide similar web support as Eclipse with RAP, but they cannot retrieve 

HTTP parameters from a user request, because Portlets are retrieved by the Portlet 

server with a separate request instead of the original user request. 

2.3.3 Deficiencies of Existing Technologies 

To develop a component-based distributed multi-user web application, developers 

need a technology that provides support for all relevant capabilities, i.e., support for 
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componentization, support for distribution, multi-user support, and web support. As 

this chapter shows, none of the existing technologies provides support for all of these 

capabilities. A possible solution is to choose a combination of technologies in order to 

cover as many of the required capabilities as possible. For example, a developer could 

combine the component technology OSGi, the web technology Java EE, and the web 

component technology Browser Plugins. The developer could build the component-

based web application with OSGi and thus make it customizable by composition on 

the web server. Using OSGi remote services, he could distribute parts of the web 

application across multiple computers. Java EE would provide support for building the 

user interface and multi-user support with sessions. In order to integrate components 

from the web client, the developer could use Browser Plugins. 

A developer that applies this strategy would have to learn and master three different 

technologies and would still face several limitations:  

End-user customization is limited to browser plugins. Thus it is limited to a small 

subset of the web application’s components. Furthermore browser plugins are limited 

in composition, they cannot integrate seamlessly with components on the web server, 

e.g., to access data components of the web application’s backend. Finally, browser 

plugins need to be implemented in a different programming language as all other 

components. 

The distribution of components is limited in several ways: client-side components 

cannot be moved from the client to the server or vice versa because they are 

implemented in different languages and for different component models than server-

side components. Client-side components are implemented, for example, in C/C++ as 

Browser Helper Objects for the Internet Explorer; server-side components are 

implemented in Java as OSGi components. Furthermore, in order to change a local 

OSGi component into a remote OSGi component, the developer must create a 

distribution provider. If such a provider is not available for a component, it cannot be 

accessed remotely. Moreover, the developer must be aware whether he accesses a local 

or a remote component, e.g., because remote components have different reference 

semantics than local components and require different thread management and data 

synchronization. 

The multi-user support is limited as only Java EE provides multi-user capabilities but 

OSGi does not. As the composition is done by OSGi, the composition is maintained for 

all users in common. Therefore each user must have the same composition and cannot 

integrate his own components without affecting other users. Only the web support is 

sufficient, as Java EE provides all the required capabilities. 
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3 The Plux Component Model 

This chapter presents the Plux component model. The metadata standard 

specifies how to declare components. Components are called extensions and use 

the metaphor of slots and plugs: extensions, which declare a slot, want to use 

other extensions; extensions, which declare a plug, provide a service to other 

extensions. The deployment standard specifies an exchangeable discovery 

mechanism, whereby extensions are self-contained, so that no separate 

configuration files are necessary for composition. The composition standard 

specifies how Plux provides full knowledge about the connections between 

extensions by maintaining a composition state, how Plux performs the 

composition automatically instead of programmatically, and how composition 

libraries can adapt the automatic composition process. The interaction standard 

specifies how extensions can communicate and exchange data in a dedicated 

runtime thread. The customization standard specifies how extensions can be 

configured with a common settings model. 

The Plux component model specifies metadata, deployment, composition, interaction, 

and customization standards for extensible and customizable applications that are 

composed from plugins. Plux supports plug-and-play composition to compose 

programs from plugins without programming or configuration effort. Plux also uses 

dynamic composition, i.e., it allows reconfiguring a program by adding and removing 

components while the program is running. The Plux component model was originally 

published in the dissertation of Wolfinger [Wolfinger, 2010]. As we improved and 

extended the Plux component model, this chapter presents its current state. 

Plux distinguishes itself from other plugin component models [Birsan, 2005], such as 

CORBA, COM+, Eclipse, or OSGi, by the following key characteristics: in Plux, a 

central composer automatically connects components and maintains their connections 

in a composition state; it uses events to notify components about changes in the 

composition state; components are discovered dynamically using an exchangeable 

discovery mechanism; components can be configured with dynamically discovered 

settings. 

Plux replaces programmatic composition with automatic composition. In 

programmatic composition, the composition logic is implemented in the components 
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themselves. Components register their provided services in a global registry, while 

other components either query the registry to retrieve registered components, or they 

listen to change events sent by the registry, to integrate registered components 

programmatically. The drawback of this solution is that every host has to implement 

the retrieval of contributors from the registry itself. This results in coding overhead and 

code duplication. Furthermore, if each host implements this mechanism on his own 

way, the composition implementation might become inconsistent and not uniform. In 

Plux, the composition mechanism is not implemented in the components, but rather in 

a central composer of the Plux runtime, which performs the composition automatically. 

Automatic composition means that the components declare their requirements and 

provisions using metadata; the composer uses these metadata to match requirements 

and provisions and to connect matching components automatically. This minimizes 

coding effort and unifies the composition mechanism. During composition, Plux sends 

composition events to the affected components so that they can react. 

At any time, Plux maintains the current composition state, i.e., it keeps track of which 

components are connected to which others, and also stores an arbitrary number of 

named labels on connections (which are called tags). As components can retrieve the 

composition state, they do not need to store references to the components they use. 

Discovery is the process of detecting new components and extracting their metadata. 

Unlike in other plugin systems, the discovery mechanism is not an integral part of 

Plux, but is a plugin itself. This makes the mechanism replaceable. Components are 

configured by settings that are provided by the discovery mechanism, which allows 

reconfiguring components dynamically. The following subsections cover those 

characteristics in more detail. 

3.1 Metadata Standard 

Plux uses the metaphor of extensions that have slots and plugs (Figure 3.1). All of them 

are specified using metadata. An extension is a component that provides services to 

other extensions and uses services provided by other extensions. If an extension wants 

to use a service of some other extension it declares a slot. Such an extension is called a 

host. If an extension wants to provide its service to other extensions it declares a plug. 

Such an extension is called a contributor. Related extensions can be packaged as a plugin 

so that they can be deployed as a single unit. 

Figure 3.1: Metadata for Plux extensions with slots and plugs 
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Slots and plugs are identified by names. A plug matches a slot, if their names match. If 

so, Plux will try to connect the plug to the slot. A slot represents an interface, which has 

to be implemented by a matching plug (Figure 3.2). The interface is specified in a slot 

definition. A slot definition has a unique name, optional parameters whose values must be 

provided by the contributors and can be retrieved by the hosts, as well as optional tags 

that can be set in the composition state and can be retrieved by the hosts and the 

contributors. The names of slots and plugs refer to the respective slot definition. 

Multiple slot definitions can be packaged as a contract. 

 

The means to provide metadata is customizable in Plux. The default mechanism 

extracts metadata for plugins and contracts from .NET attributes in assembly files. 

Assembly files are DLL files that contain .NET classes, metadata, and resources. 

.NET attributes are pieces of information that can be attached to .NET constructs, such 

as classes, interfaces, methods, or fields. At run time, the attributes can be retrieved 

using reflection [Ecma, 2010]. 

Plux specifies the following custom .NET attributes (see examples from Listing 3.1 to 

Listing 3.3): the SlotDefinition attribute to declare an interface as a slot definition, the 

Extension attribute to declare a class as an extension, the Slot attribute to declare 

requirements for contributors in hosts, the Plug attribute to declare provisions in 

contributors, the ParamDefinition attribute to declare required parameters in slot 

definitions, the Param attribute to declare provided parameter values in contributors, 

and the TagDefinition attribute to declare optional tags in slot definitions. Plux can use 

arbitrary objects as parameter values, however the default metadata mechanism of 

.NET attributes limits parameter values to compile-time constants. 

Let us look at an example. Assume that we have a workbench implemented as a host 

extension working with views that are implemented as contributors. The workbench 

displays the view’s titles in its view menu and their controls within the workbench 

window. Figure 3.3 on the next page shows the user interface of the workbench with 

an email and a payroll view, as well as the corresponding extensions with plugs and 

slots. The Workbench extension is plugged into the Application slot of the Plux core and 

acts as a host for the contributor extensions Email and Payroll, which are views for the 

workbench that are plugged to it via a View slot and tagged with a Menu tag. 

Figure 3.2: Metadata of a slot and a plug named "A" defined in a slot definition 
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In order to implement this example, we need to define the View slot into which the 

views can plug, i.e., we create the interface IView and mark it with the SlotDefinition 

attribute (Listing 3.1). Each view contributor must provide two different titles: a static 

title for views that are currently not opened, and a dynamic title for opened views. The 

ParamDefinition attribute Title ensures that view contributors must provide a static title 

as a parameter value. The static title is retrieved as a parameter (and not as a part of the 

interface) because the workbench needs to retrieve the title without instantiating a 

view to show the title of available views in its view menu, e.g., "Email". The dynamic 

title can be retrieved with the GetTitle method of the interface and thus can reflect the 

currently displayed content in the caption of the view, e.g., "Email - Inbox (2 new 

messages)". To retrieve the user control of the view, the workbench calls the GetControl 

method. In order to make the menu of the workbench customizable, we use the 

TagDefinition attribute to define a tag Menu. Through this tag, the workbench 

determines whether it must show the static title of a view in the view menu: view 

contributors that are tagged with Menu are shown in the menu, others are not. 

 

Next, we implement a contributor for the View slot. Listing 3.2 shows a view for emails. 

The Extension attribute marks the class EmailView as an extension and the Plug attribute 

View marks it as a contributor for the View slot. As required by the slot definition, the 

class implements the interface IView and provides a value for the parameter Title. 

Finally, we implement the workbench extension (Listing 3.3). To make it a host for 

views, we specify a View slot using the Slot attribute. As the workbench is also a 

contributor for the Application slot of the Plux core, we apply the Plug attribute 

Application and implement the corresponding IApplication interface that defines the 

[SlotDefinition("View")] 
[ParamDefinition("Title", typeof(String))] 
[TagDefinition("Menu")] 
interface IView { 
  String GetTitle(); 
  Control GetControl(); 
} 

Listing 3.1: Interface and metadata for a slot definition 

Figure 3.3: User interface and extensions of a workbench application 



Deployment Standard 

43 

method Start. At startup, Plux creates an instance of the workbench, connects it to its 

core, and calls the workbench's Start method. The implementation of the class 

Workbench is covered in Section 3.3 Composition Standard. 

 

To complete the example, we compile the slot definition for views (Listing 3.1) into a 

contract assembly Workbench.Contract.dll, the workbench extension (Listing 3.3) into a 

plugin assembly Workbench.dll, and the view extensions for email (Listing 3.2) and 

payroll (implementation not shown) into the plugin assemblies Email.dll and Payroll.dll. 

3.2 Deployment Standard 

Slot definitions are deployed in contracts and extensions are deployed in plugins, i.e., 

both are deployed in DLL assembly files. The Plux discovery mechanism detects 

contracts and plugins and extracts the metadata of slot definitions from a contract and 

the metadata of extensions from a plugin. Next, it notifies the Plux core about 

discovered contracts and plugins, which stores them to retrieve their metadata during 

the composition of the application (see Section 3.3 Composition Standard).Vice versa, 

the discoverer also notifies the Plux core when contracts and plugins are removed. 

Plux supports dynamic reconfiguration, i.e., plugins can be added and removed at run 

time without restarting the application. 

In order to make the discovery mechanism customizable, it is implemented as an 

extension itself. For this, the Plux core provides a Discovery slot for discoverer 

extensions, beside the Plux core’s Application slot for applications. The default 

Discoverer extension watches one or more directories for newly added or removed 

assembly files and reads the metadata from their attributes. Figure 3.4 on the next page 

shows an example with a Discoverer extension that is plugged into the Discovery slot of 

the Plux core. The Discoverer extension declares two slots: a Detector slot for 

[Extension] 
[Plug("Application")] 
[Slot("View")] 
class Workbench : IApplication { 
  void Start() { /* not shown */ } 
  ... 
} 

Listing 3.3: Implementation and metadata for a host extension 

[Extension] 
[Plug("View")] 
[Param("Title", "Email")] 
class EmailView : IView { 
  String GetTitle() { /* not shown */ } 
  Control GetControl() { /* not shown */ } 
} 

Listing 3.2: Implementation and metadata for a contributor extension 
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contributors, which detect newly added or removed assemblies, and an Analyzer slot 

for contributors, which extract metadata from detected assemblies. The 

FilesystemDetector contributor monitors directories in the file system and detects DLL 

assembly files when they are copied into a directory or when they are deleted from 

there. The AssemblyAnalyzer contributor retrieves metadata from custom attributes of 

detected assemblies. In addition to the FilesystemDetector and the AssemblyAnalyzer, 

Plux provides further detectors and analyzers, e.g., an XmlDetector that monitors 

entries in an XML file that specify the assemblies to be detected, and a DatabaseAnalyzer 

that retrieves metadata for assemblies from a database. The Discoverer extension can 

use multiple detectors and analyzers at the same time. 

 

 

Let us get back to the workbench example from the previous section. When we copy 

the contracts into a Contracts directory and the plugins into a Plugins directory 

(Figure 3.5  left), the FilesystemDetector detects the newly added files and the 

AssemblyAnalyzer extracts the metadata for the slot definitions and extensions from the 

assembly files (Figure 3.5 right). 

Figure 3.4: Discoverer extension plugged into the Discovery slot of the Plux core 

Figure 3.5: Metadata extracted by the discoverer from the contract 

and the plugins of the workbench application 
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3.3 Composition Standard 

Composition is the process that matches the requirements of hosts with the provisions 

of contributors. In Plux, this is done by the composer, which assembles a program from 

extensions provided by the discoverer. When the discoverer detects a new extension, 

the composer integrates it into the program. Vice versa, when the discoverer detects 

that an extension was removed, the composer removes it from the program. 

Integrating an extension means that the composer searches the composition state 

(Section 3.3.1) for slots that match the plugs of the new extension. If such slots are 

found, the composer plugs the extension, i.e., it creates an instance of the extension and 

connects its plugs to all matching slots in the composition state. Removing an extension 

means that the composer searches the composition state for slots where instances of the 

extension are plugged. If such slots are found, the composer unplugs the extension, i.e., 

it disconnects the plugs of the extension from these slots and destroys the instance (see 

Section 3.3.2 Composition Operations and Section 3.3.4 Automatic Composition). 

3.3.1 Composition State 

In Plux, all connections between components are established by the composer. 

Therefore the composer has full knowledge about the instantiated extensions, their 

slots and plugs as well as about their connections. This information is called the 

composition state. If a host wants to use its plugged contributors, it can simply retrieve 

them from the composition state. For every instantiated extension, the composition 

state holds the meta-object of the extension, the meta-objects of its slots and plugs as 

well as a reference to the corresponding extension object (Figure 3.6). The extension 

object is the extension’s implementation, i.e., an instance of the class that was marked 

with the Extension attribute. For every slot, the composition state keeps track which 

plugs are connected to it (retrievable via the PluggedPlugs property); and for every plug 

the composition state keeps track of to which slots it is connected (retrievable via the 

PluggedInSlots property). 

Figure 3.6: Meta-objects for instantiated extensions in the composition state 
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Let us show, by means of the workbench example, how the composition state can be 

used to create a window menu that lists the titles of all opened views (Figure 3.7). The 

window menu is used to set the focus to an open view and to bring it to the 

foreground. For each plugged view the workbench opens the view's control in a child 

window and it closes the child window when the view contributor is unplugged. How 

this is done is covered in Section 3.3.3 Composition Events later in this chapter. 

 

Listing 3.4 shows how the workbench creates the window menu with entries for 

opened views, i.e., how it creates a menu entry for each plugged view contributor. 

When the composer creates the Workbench extension, it passes the extension's meta-

object to the constructor, which uses it to retrieve the meta-object of the View slot. 

When the user opens the window menu the ShowWindowMenu method is called. This 

method retrieves the plug meta-objects of the view contributors that are plugged into 

the View slot using the slot's PluggedPlugs property (Figure 3.6). For each retrieved plug 

we retrieve the extension object of the contributor. As Plux ensures that only 

contributors are plugged that implement the interface IView, which is required by the 

slot definition, we can safely cast the contributors extension object to IView. Finally, we 

Figure 3.7: Window menu in the user interface of the workbench application 

[Extension] 
[Plug("Application")] 
[Slot("View")] 
class Workbench : IApplication { 
  Slot viewSlot; 

  Workbench(Extension e) { viewSlot = e.Slots["View"]; } 

  void ShowWindowMenu() { 
    Menu windowMenu = ... 
    foreach (Plug p in viewSlot.PluggedPlugs) { 
      var view = (IView) p.Extension.Object; 
      String title = view.GetTitle(); 
      windowMenu.Add(title, p); 
    } 
    windowMenu.Show(); 
  } 
} 

Listing 3.4: Retrieving meta-objects for plugged contributors 

from the composition state 
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retrieve the dynamic title from the extension object and use it as a label for the menu 

entry. Additionally, we store the plug meta-object so that we can later use it to switch 

to the corresponding view when the user clicks the menu entry. 

Besides the plugged relationship, the composition state also maintains the tagged 

relationship. A tag can be set between a plug and a slot, regardless of whether that 

plug is plugged into the slot. That means that contributors can be tagged before a host 

uses them, i.e., before they are plugged. This can be used to introduce contributors to a 

host, e.g., to make a view contributor available in the workbench menu before it is even 

instantiated. Contributors can also be tagged when the host already uses them, i.e., 

when they are already plugged. This can be used to mark one of the plugged 

contributors, e.g., as the current foreground view in the workbench. 

Figure 3.6 shows how the contributors that are plugged in a slot can be retrieved from 

the composition state, either via the PluggedPlugs property of a slot, or via the 

PluggedInSlots property of a plug. Similarly, for every slot, the composition state keeps 

track of which plugs are tagged with a tag (retrievable via the slot’s Tags property); and 

for every plug, the composition state keeps track of in which slots it is tagged 

(retrievable via the plug’s Tags property). 

In our workbench example, the Menu tag can be used to customize which views should 

be visible in the view menu, so that the menu presents available views and lets the user 

open them by clicking the menu entries. However, as the workbench shows only those 

views in its view menu which are tagged with the Menu tag, users can customize the 

view menu by tagging or untagging view contributors. 

Listing 3.5 shows how the workbench uses the Menu tag. By setting AutoTag="Menu" 

as a property of the View slot, we ensure that the composer automatically tags all 

discovered view contributors (Section 3.3.4 Automatic Composition). When the user 

[Extension] 
[Plug("Application")] 
[Slot("View", AutoTag="Menu")] 
class Workbench : IApplication { 
  Slot viewSlot; 

  Workbench(Extension e) { viewSlot = e.Slots["View"]; } 

  void ShowViewMenu { 
    Menu viewMenu = ... 
    foreach (Tag t in viewSlot.Tags["Menu"]) { 
      String title = (String) t.Plug.Param["Title"].Value; 
      viewMenu.Add(title, p); 
    } 
    viewMenu.Show(); 
  } 
} 

Listing 3.5: Retrieving meta-objects for tagged contributors 

from the composition state 
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opens the view menu, the workbench retrieves the tagged contributors from the view 

slot using the Tags property with the tag name as a filter. For each tagged contributor, 

we retrieve its static title from the Title parameter value of the plug. Finally, we add a 

menu entry with the title as a caption to the view menu and store also the plug meta-

object so that we can later open the corresponding view when the user clicks the menu 

entry (see UI-bound Composition Behaviors in Section 3.3.6). 

In addition to the meta-objects and relationships explained in this section, the 

composition state holds further composition data. These will be explained in the next 

Section 3.3.2 Composition Operations when the corresponding concepts are presented. 

3.3.2 Composition Operations 

In Plux, the composer assembles an application from extensions and stores them 

together with their connections in the composition state. For this purpose it uses 

several composition operations, which we describe in this section by means of the 

workbench example. 

When Plux starts an application, the composition state contains only the Plux core 

extension, which provides an Application slot as a root for composition (Figure 3.8 

Before). At startup, contributors with an Application plug are composed here. 

Create 

Before an extension can be composed, it must be created. To create an extension means 

to create the extension meta-object as well as the related slot and plug meta-objects 

(Figure 3.8 After) using the metadata provided by the discoverer. The fact that the 

workbench meta-objects in Figure 3.8 are shown with dashed lines indicates that the 

extension was not yet activated (see operation Activate), i.e., only the meta-objects exist, 

but the extension object was not yet instantiated. 

 

 

Plug 

Hosts can only use contributors that are plugged into them. To plug a contributor 

means to connect a plug with a slot in the composition state. The meta-objects of 

plugged contributors can be retrieved from the composition state using a slot's 

PluggedPlugs property. The host can retrieve the extension object of a plugged 

contributor and can call methods via the interface specified in the slot definition.  

Figure 3.9 shows the composition state before and after the Plug operation. Please note 

that the extension object of the workbench is still not instantiated. 

Figure 3.8: Composition state before and after the Create operation 
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Activate 

To activate an extension means to instantiate its extension object. If a host retrieves the 

extension object from the extension's meta-object using the Object property, the Activate 

operation is triggered automatically. Once a contributor has been activated, the host 

can call methods on the contributor's extension object via the interface of the slot to 

which it is connected. Whether an extension is activated or not can be retrieved from 

the composition state using the extension's IsActivated property. Figure 3.10 shows an 

example: the unactivated extension (Before) is drawn with dashed lines, whereas the 

activated extension (After) is drawn with solid lines. The fact that the slot meta-object 

is crossed out indicates that the slot is yet closed (see operation Open). 

 

 

Open 

Slots can be open or closed. Note that contributors can only be plugged or tagged to 

open slots. To open a slot means to mark it as open in the composition state. Whether a 

slot is open or closed can be retrieved from the composition state using the slot's 

IsOpen property. Figure 3.11 shows an example: the closed slot is struck through 

(Before), whereas the open slot is not (After). 

 

 

Tag 

To tag a slot-plug pair means to store a named relation for that pair in the composition 

state. A slot-plug pair can have multiple tags, namely all that were defined in the slot 

definition. Tags can be set even when the plug is not yet connected to the slot. The 

meta-object of tags can be retrieved from the composition state using a slot's Tags 

property. Whether a tag is set between a slot and a plug can be retrieved from the 

Figure 3.9: Composition state before and after the Plug operation 

Figure 3.10: Composition state before and after the Activate operation 

Figure 3.11: Composition state before and after the Open operation 
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composition state using the slot's IsTagged method. Figure 3.12a shows an example of a 

contributor that is tagged with Menu but not plugged, Figure 3.12b shows a contributor 

that is both plugged and tagged. 

 

 

Destroy 

To destroy an extension means to remove its meta-object from the composition state 

(Figure 3.8, Before). To destroy an extension includes its deactivation (operation 

Deactivate), if it was activated. 

Unplug 

To unplug means to remove a plug as a contributor for a slot in the composition state 

(Figure 3.9, however with Before and After swapped). Unplugged contributors are 

candidates for garbage collection (Section 3.3.4 Automatic Composition), i.e., the next 

time when the composer is idle, it checks if the unplugged contributor is connected to 

any other slot. If it is neither plugged nor tagged to any slot anymore, the composer 

destroys the contributor (operation Destroy), if it is still tagged to a slot but not plugged 

to any slot, the composer deactivates the contributor (operation Deactivate). 

Deactivate 

To deactivate an extension means that its slots are closed (operation Close) and that its 

extension object is disposed and released for garbage collection. (Figure 3.8, After). As 

the extension object of a deactivated extension must not be used anymore, deactivating 

an extension includes unplugging the extension from all hosts where it was plugged 

before the extension's slots are closed and the extension object is disposed. 

Close 

To close a slot means to mark it as closed in the composition state (Figure 3.11, 

however with Before and After swapped). As Plux allows plugged and tagged 

contributors only in open slots, to close a slot includes untagging (operation Untag) 

and unplugging (operation Unplug) all contributors (not shown in Figure 3.11). 

Figure 3.12: Composition state before and after the Tag operation 
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Untag 

To untag means to remove the named relation between a slot and a plug from the 

composition state (Figure 3.12, however with Before and After swapped). Similar to the 

Unplug operation, untagged contributors are candidates for garbage collection if they 

are not plugged to any slot anymore. 

3.3.3 Composition Events 

For each composition operation, the composer sends the following events to the 

affected components (see below): a CanCompose event asks the receiver whether the 

operation can be performed, if one receiver denies the request, the composer cancels 

the operation; a Composing event notifies that the operation is about to be performed so 

that receivers can prepare for the upcoming change; a Composed event notifies that the 

operation has been completed so that receivers can react to the change. Although 

composition events are primarily useful for hosts, other components, such as 

contributors or system tools, can also receive the events. Hosts can register for events 

on their extension and slot meta-objects, contributors can register for events on their 

plug meta-objects, and system tools can register for global events on the composer. 

For each composition operation, there is a specific variant of the CanCompose, 

Composing, and Composed events, e.g., CanPlug, Plugging, and Plugged for the Plug 

operation. Figure 3.13 lists the events for all composition operations and shows where 

receivers can register for them. 

 

 

In the workbench example, we use the composition events of the plug and unplug 

operations to open and close views. However, before we show how this is done, we 

modify our workbench, in order to make the arrangement of views customizable. We 

Figure 3.13: Composition events for the Plux composition operations 
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factor out the view arrangement logic from the Workbench extension and introduce an 

additional slot for containers instead. The views are now arranged by a contributor for 

the Container slot. Figure 3.14 shows two examples for container contributors: the 

MdiContainer contains the original logic, which arranges the views as child windows; 

the TabContainer is an alternative which arranges the views on tabs. 

 

 

Listing 3.6 shows the modified version of the workbench with the Container slot and 

how it handles the composition events for the View slot in order to open and close 

views when they are plugged and unplugged. In order to do so, it registers event 

handler methods for the CanPlug, the Plugged, and the Unplugging events in the slot 

attribute for the View slot. 

Please note that in contrast to previous implementations of the workbench, the 

Workbench class inherits from the base class ExtensionBase now and thus does not need 

to store references to the meta-objects of its slots itself, but retrieves them via the Slots 

property in the base class. 

As the workbench can only arrange views if a container is plugged, it registers the 

IsContainerPlugged method as an event handler for the View slot's CanPlug event. The 

event handler denies plug operations for views if no container is present and writes a 

log message. After a container has become available, the workbench is ready for views. 

As soon a view is plugged the workbench opens it. For this, it registers the OpenView 

method as an event handler for the View slot's Plugged event. The event handler 

retrieves the plugged container via the Container slot and calls the container's Open 

Figure 3.14: Customizable view arrangement in the 

workbench example using containers 



Composition Standard 

53 

method with the currently plugged view as an argument. Just before a view is 

unplugged, the workbench closes it. For this, it registers the CloseView method as an 

event handler for the View slot's Unplugging event. When invoked, the event handler 

closes the view in the container. 

In the methods OpenView and CloseView, we retrieve the container without even 

checking if a container is plugged, because the CanPlug event handler ensures that 

views can only be plugged once a container is plugged. Please note, that the 

implementation in Listing 3.6 is not sufficient for all situations, e.g., the workbench 

does not handle the situation where the container is unplugged while views are 

plugged. A solution for this problem is shown in a further improved implementation 

of the workbench in Section 3.3.5 Programmatic Composition. 

3.3.4 Automatic Composition 

Automatic composition is the process performed by the composer where new 

extensions are created and connected (see Composition Process below), or extensions 

are disconnected and destroyed (see Decomposition Process below). 

Listing 3.6: Handling CanPlug, Plugged, and Unplugging composition events 

[Extension] 
[Plug("Application")] 
[Slot("View", AutoTag="Menu", CanPlug="IsContainerPlugged", 
      Plugged="OpenView", Unplugging="CloseView")] 
[Slot("Container")] 
class Workbench : ExtensionBase, IApplication { 

  bool IsContainerPlugged(CompositionEventArgs args) { 
    if (Slots["Container"].PluggedPlugs.Count == 0) { 
      args.Logger.Write( 
          "View denied because no container is plugged."); 
      return false; 
    } 
    return true; 
  } 

  IContainer Container { 
    get { return (IContainer) 
      Slots["Container"].PluggedPlugs[0].Extension.Object; } 
  } 

  void OpenView(CompositionEventArgs args) { 
    Container.Open((IView) args.Plug.Extension.Object); 
  } 

  void CloseView(CompositionEventArgs args) { 
    Container.Close((IView) args.Plug.Extension.Object); 
  } 
} 
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Composition Process 

The composition process defines how extensions are composed to a program, i.e., it 

creates extensions and connects them to other extensions. The composition process is 

divided into composition sequences. A sequence comprises the composition operations 

that are necessary to compose one host with all contributors that are available for the 

slots of this host, i.e., each composition sequence makes one extension ready for use. In 

a composition sequence, the composer performs the following composition operations 

in the given order: (1) it activates the host, (2) opens the first slot of the host, (3) creates 

the contributors for this slot, (4) tags them with the specified tags, and (5) plugs them 

into the slot. If the host has multiple slots, the composer composes them one after 

another. If it has no slots, the sequence is completed after activating the host. 

Figure 3.15 shows the composition sequence in which the composer composes the 

Workbench extension, i.e., the Workbench extension is the host and the Email extension is 

the contributor. In this sequence the composer activates the Workbench host, opens its 

View slot, creates the Email contributor, tags it with the Menu tag, and finally plugs it 

into the View slot. Now the Workbench is completely composed and ready for use. 

 

 

In automatic composition, the order of the composition operations in a composition 

sequence cannot be changed. However, which composition operations should be 

performed automatically and which should not can be configured globally on the 

composer or individually for each slot and plug. Thus, depending on the configuration 

of the composer or of a meta-object, a composition sequence performs or skips a 

composition operation. The default is that automatic composition is enabled for all 

composition operations, except for the Tag operation. To enable automatic composition 

Figure 3.15: Composition sequence comprising the composition operations 

that compose a host with a contributor 
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for the Tag operation, the AutoTag property of a slot needs to be set, either in its 

declaring attribute or in its meta-object. As the View slot of the Workbench specifies 

AutoTag="Menu" in its slot attribute (Listing 3.6), the Menu tag is set during automatic 

composition. To disable automatic composition for a composition operation, the 

corresponding composition property of the composer or of a meta-object needs to be 

disabled. For example, setting AutoOpen=false for a slot, disables the Open operation in 

a composition sequence for this slot. Of course, as contributors can be tagged and 

plugged only into open slots, disabling the Open operation for a slot causes the 

operations Tag and Plug to be skipped in the composition sequence, too. However, if 

automatic composition is enabled for the Tag and Plug operations, the composer 

automatically performs them as soon as the slot gets opened later 

(see 3.3.5 Programmatic Composition). 

Figure 3.16 shows the composition properties that can be set to enable or disable 

automatic composition for a certain composition operation, either globally for all slots 

and plugs or individually for specific slots and plugs. Automatic composition for the 

operations Create and Activate cannot be disabled. 

 

 

After a composition sequence is completed, the composer is idle until a new 

composition sequence is triggered. In automatic composition, a composition sequence 

is triggered either when a host retrieves the extension object of a not yet activated 

contributor (see Host-triggered Composition) or when the discoverer adds a new 

extension (see Discoverer-triggered Composition). 

Host-triggered Composition  

In host-triggered composition, the composer starts a composition sequence, when a 

host tries to retrieve the extension object of a not yet activated contributor. As the new 

composition sequence is started for the accessed contributor, this contributor gets 

composed just in time before the extension object is returned to the host. Please note, 

that in this context, the accessed contributor is now the host to be composed, i.e., it is 

the extension that gets activated and whose slots get filled with further contributors. 

With host-triggered composition, Plux ensures that a contributor always is activated 

and its slots are filled when it is accessed by a host. 

Figure 3.16: Composition properties to enable or disable automatic 

composition for specific composition operations 
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When a Plux application is started, the composition starts with the composition 

sequence for the Plux core. The Plux core listens to the Plugged event of its Application 

slot and retrieves the extension object of the contributor when it is plugged. Thereby 

the Plux core triggers a composition sequence for the newly plugged contributor. 

Listing 3.7 shows the event handler for the Plugged event at the Application slot of the 

Plux core retrieving the extension object of its contributor. When it calls the 

contributor's Start method, the contributor is already composed. 

 

 

Figure 3.17 shows the composition process for the workbench example. In the 

bootstrap composition sequence 1, the Plux core is the host to be composed. The 

composer activates the Plux core and fills the Application slot. When the Plux core 

retrieves the extension object of the Workbench contributor in response to the Plugged 

event in sequence 1 (i.e., while composition sequence 1 has not yet completed), 

sequence 2 is triggered as a subsequence of sequence 1. As sequence 2 is a subsequence 

of sequence 1, sequence 2 completes before sequence 1. 

In sequence 2, the Workbench is the host to be composed and the Email view is the 

contributor. When the Workbench retrieves the extension object of the Email view in its 

Plugged event handler, it triggers sequence 3 as a subsequence of sequence 2. In 

sequence 3, the Email view is the host. As the Email view has no slots, sequence 3 has 

no contributors to compose and is completed after the Email view has been activated. 

The sequences 2 and 1 are also completed because they have no further composition 

operations to be performed. This concludes the composition process for the workbench 

application and the workbench is ready for use. 

The composition of a host may trigger the composition of its contributors recursively. 

Thus, whenever a host retrieves the extension object of one of its contributors, not only 

this contributor itself is guaranteed to be already composed, but also the contributors 

of this contributor if their extension objects were accessed. 

As the composer only starts a composition sequence for a contributor when the 

contributor's extension object is retrieved, the composer only composes a minimal set 

of extensions that are in use, thus guaranteeing fast startup times of Plux-based 

applications. For example, if the workbench would not retrieve the views' extension 

objects immediately in its Plugged event handler, the composer would not compose 

[Extension] 
[Slot("Application", Plugged="StartApplication")] 
class Core { 
  void StartApplication(CompositionEventArgs args) } 
    IApplication app = (IApplication) args.Plug.Extension.Object; 
    app.Start(); 
  } 
} 

Listing 3.7: Host retrieving the extension object of its contributor 

in the Plugged event handler 
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view extensions until they are used. In Section 3.3.6 Behavior-guided Composition, we 

will modify the workbench so that it does not open each view immediately, but only 

when the user clicks an item from the view menu. 

Discoverer-triggered Composition 

Composition sequences are also triggered when the discoverer adds new extensions. 

For each newly added extension, the composer searches the composition state for 

matching slots and composes the new contributors, i.e., it creates, tags and plugs them. 

However, composition sequences that are triggered by the discoverer do not include 

the Activate and the Open operations on the host because the hosts were already 

composed in prior composition sequences. In Figure 3.18 on the next page, the 

discoverer adds a new Payroll view as a contributor for a View slot. As the composer 

finds the Workbench as a matching host for the Payroll view, it starts composition 

sequence 4, which creates the Payroll view, tags it with the Menu tag, and plugs it into 

the View slot of the Workbench extension (not shown). 

Figure 3.17: Composition sequences triggered as subsequences by hosts 

that retrieve the extension objects of their contributors 
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Composition Sequences with Multiple Contributors 

The composition sequences, shown so far, covered only scenarios with a single 

contributor that was composed per composition sequence. However, if multiple 

contributors are available for a slot, a composition sequence composes all available 

contributors. Such a composition sequence is performed as follows: the composer 

activates the host and opens the slot of the host. Next the composer creates and tags all 

contributors, before it plugs the contributors. The order in which contributors are 

composed is not specified. 

Figure 3.19 shows an updated version of composition sequence 2 from Figure 3.17 on 

page 58, this time, however, with multiple contributors available at the same time: the 

Email view and the Payroll view. The composer activates the Workbench and opens its 

View slot. After that, the composer creates and tags the contributors Email and Payroll. 

Next, the composer plugs the first contributor, i.e., the Email view. When the Workbench 

retrieves the extension object of the Email view, it triggers composition sequence 3, 

where the Email view is activated. As the Email view does not have slots, sequence 3 is 

completed after that. Finally, the Payroll view is plugged and activated in the same 

way. 

Figure 3.18: Composition sequence triggered by a discoverer 

that adds a new extension 
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Non-shared versus Shared Contributors 

In automatic composition, the composer distinguishes between non-shared and shared 

contributor instances. A non-shared instance is connected to only a single host, whereas 

a shared instance is connected to multiple hosts and thus is shared among them. Hosts 

Figure 3.19: Composition sequence comprising the composition operations 

that compose a host with multiple contributors 
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can specify in their metadata whether they want a non-shared or a shared contributor 

to be connected, the default being a non-shared contributor. 

Let us extend the workbench example, so that the Email view and the Payroll view 

share a DataModel contributor, e.g., a common address book. Figure 3.20 shows the 

difference between a non-shared and a shared contributor using the workbench 

example. 

 

 

As we want to use the same data both in Email and in Payroll, we choose the shared 

data model. Listing 3.8 shows the metadata of the Email view, which specify that it 

requests a shared contributor in its Data slot. 

 

 

If a host specifies that it requests a shared contributor, during composition the 

composer either reuses a specific shared instance of the contributor, which was already 

created in a prior composition sequence, or the composer creates a new specific shared 

contributor instance, which is reused later for other hosts that also request a shared 

contributor. 

Decomposition Process 

The decomposition process defines how extensions are decomposed from a program, 

i.e., how the composer disconnects and destroys them. Similar to the composition 

process, the decomposition process is divided into sequences. A decomposition 

sequence comprises the composition operations that are necessary to decompose a 

host. In a decomposition sequence the composer performs the following composition 

operations in the given order for every slot: it untags all contributors from the slot, 

Figure 3.20: Multiple hosts use separate instances of a contributor (non-shared), 

or use a common instance of a contributor (shared) 

[Extension] 
[Plug("View")] 
[Param("Title", "Email")] 
[Slot("Data", Shared=true)] 
class Email : IView { 
  ... 
} 

Listing 3.8: Metadata of a host with a slot for shared contributors 
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unplugs them from the slot, and closes the slot. Finally, it deactivates and destroys the 

host. Figure 3.21 shows the decomposition of the Workbench extension in 

decomposition sequence 2. In this sequence the composer removes the Menu tag, 

unplugs the Email view, closes the View slot, and finally deactivates and destroys the 

Workbench extension. Decomposition is triggered by the garbage collector as explained 

in the next section. 

 

Garbage Collection 

Plux provides a special garbage collector that destroys extensions that are not used 

anymore. Contributors those are untagged and unplugged during a decomposition 

sequence become candidates for garbage collection. Every time when Plux becomes 

idle, it starts the garbage collector. Extensions that are neither tagged nor plugged in 

any slots cannot be used anymore and thus the garbage collector triggers a 

decomposition sequence for them. Extensions that are not plugged but still tagged to a 

slot are not used at the moment and thus get deactivated, whereby all contributors of 

the deactivated extension get disconnected (see operation Deactivate in Section 

3.3.2 Composition Operations) and therefore become new candidates for garbage 

collection. 

Figure 3.21: Decomposition sequences triggered by the Plux 

garbage collector after a host was unplugged 
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In contrast to composition sequences, decomposition sequences are not nested, i.e., a 

contributor is not immediately decomposed after it was unplugged; instead, 

decomposition starts when Plux is idle again, thus an unplugged contributor can be 

moved from one slot to another without being garbage-collected instantly. In other 

words, it is possible to unplug the contributor in one decomposition sequence and to 

plug it in another composition sequence. If decomposition sequences were nested, the 

contributor would already be destroyed or deactivated before it could be plugged into 

the new slot. 

In Figure 3.21 on page 62 the Workbench is unplugged in decomposition sequence 1 and 

becomes a candidate for garbage collection. When Plux becomes idle, it triggers 

decomposition sequence 2 for the Workbench because it is neither tagged nor plugged in 

any slot. The same happens with the Email view. It is untagged and unplugged in 

sequence 2 and decomposed in sequence 3 the next time Plux becomes idle. Finally, the 

Workbench and its contributors are removed by the Plux garbage collector and the 

Application slot of the Core is empty. This decomposition process ensures automatic 

decomposition, i.e., when a host is disconnected, all its contributors as well as their 

contributors are disconnected and destroyed recursively as well if they are not 

connected to any other host. 

3.3.5 Programmatic Composition 

Automatic composition is sufficient for many situations, however in some situations 

developers need more control over which contributors should be connected to a host 

and which should not. For this purpose, Plux allows developers to partially disable the 

automatic composition process by configuring the composer, so that it omits certain 

composition operations. For example, the composer might be configured to open slots 

and to tag contributors automatically, but to omit automatic plugging of contributors 

for a certain slot. This configuration can be done for individual slots, for individual 

plugs, or for all slots and plugs in the composition state. As a substitute for the 

disabled automatic composition operations, developers can call composition 

operations programmatically using the composer’s API. 

Programmatic composition can be combined with automatic composition. For 

example, if a host wants to make sure that its slots are filled in a certain order, it can 

use automatic composition to create and plug the contributors, but use programmatic 

composition to control when the slots are opened. For doing so, the host disables the 

automatic Open composition operation for the slots that it wants to control and calls the 

Open composition operation programmatically for these slots when the time has come. 

Figure 3.22 shows an example for such a scenario with the Workbench extension that 

has two slots. The first slot is for views; everything that plugs here is displayed within 

the workbench. The other slot is for containers; the contributor that plugs here controls 

how the views are arranged within the workbench. There is some kind of relationship 

between the two slots. Without a container, the workbench cannot arrange the views. 
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Therefore in (a), the View slot has to be kept closed until a container is plugged. When 

in (b) a container is plugged, in (c) the View slot should be opened and filled with view 

contributors. 

The scenario of Figure 3.22 cannot be achieved with automatic composition because 

automatic composition would open and fill the View slot immediately, possibly before 

the Container slot. There would be no guarantee that the Container slot is filled before 

the View slot. To achieve the desired composition order, we use programmatic 

composition to control the composition process as shown in Figure 3.23 

The Workbench disables the Open operation for its View slot, thus the automatic 

composition does not open this slot after activating the Workbench. Then the automatic 

Figure 3.22: Relationship between two slots that have to be filled in a certain order 

Figure 3.23: Controlling the composition process by combining 

automatic and programmatic composition 
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composition opens the Container slot and fills it with the MdiContainer. In reaction to 

the Plugged event of the Container slot the Workbench can now call the composition 

operation Open for the View slot programmatically. This triggers a new composition 

sequence, whereby the automatic composition fills the View slot with the Email 

contributor. This composition process composes the Workbench in the desired order, as 

views are only composed after a container was composed. 

Listing 3.9 shows the implementation of the modified Workbench host. The assignment 

AutoOpen=false in the View slot's attribute disables the Open composition operation in 

automatic composition. Instead, the workbench performs this operation now 

programmatically in the Plugged event handler of the Container slot: when a container 

is plugged, the Plugged event handler calls the View slot's Open method. Vice versa, just 

before a container is unplugged, the Unplugging event handler closes the View slot by 

calling the slot's Close method. 

 

Figure 3.24 shows the composition operations that can be performed programmatically 

for extensions, slots, and plugs. The operations Tag, Plug, Untag, and Unplug have a 

parameter for the opposite slot or plug, e.g., if the Plug operation is applied on a slot, it 

[Extension] 
[Plug("Application")] 
[Slot("View", AutoOpen=false, ...)] 
[Slot("Container", Plugged="ContainerPlugged", 
    Unplugging="ContainerUnplugging")] 
class Workbench : ExtensionBase, IApplication { 
  ...   

  void ContainerPlugged(PlugEventArgs args) { 
    Slots["View"].Open(); 
  } 

  void ContainerUnplugging(PlugEventArgs args) { 
    Slots["View"].Close(); 
  } 
} 

Listing 3.9: Implementation of a host that calls composition 

operations programmatically 

Figure 3.24: Composition operations for extensions, slots, and plugs 
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gets the opposite plug as an argument; if it is applied on a plug, it gets the opposite slot 

as an argument. The Tag and Untag operations also get the name of the applied tag as 

an argument. 

3.3.6 Behavior-guided Composition 

Programmatic composition allows developers to write custom composition logic to 

control the composition process. However, this composition logic can bloat the 

implementation of an extension. Furthermore, it is hidden inside the extensions and 

thus cannot be reused in other extensions. Extensive use of programmatic composition 

can lead to the following problems: it duplicates code because common composition 

logic has to be repeatedly implemented in many extensions and it is error-prone 

because it requires detailed understanding of the composition process. 

To avoid programmatic composition, Plux supports composition behaviors, which are 

reusable composition logic that can be applied declaratively to individual slots or 

globally to all slots in the composition state. A composition behavior targets a specific 

composition problem, for example, the requirement that an extension is automatically 

unplugged from a slot when some other extension is plugged there. In order to achieve 

this, the composition behavior reacts to the composition events of a slot and applies its 

composition logic by performing or blocking composition operations when the 

composition events occur.  

The composition logic of a composition behavior can be implemented in three different 

ways. In self-contained composition behaviors the composition logic is implemented in the 

behavior itself, in rule-based composition behaviors the composition logic is extracted into 

a generic composition rule, which can be reused by different composition behaviors, 

and in UI-bound composition behaviors the composition logic is bound to the application's 

user interface, i.e., the composition logic is provided by the user who interacts with the 

application. The following sections describe the different types of composition 

behaviors in detail. 

Self-contained Composition Behaviors 

A self-contained composition behavior is a class that implements the composition logic 

necessary to achieve a desired composition result. It reacts to composition events, 

retrieves the composition state, and performs or blocks composition operations. 

In the workbench example from Listing 3.9 on page 65 the host used programmatic 

composition to make sure that the view slot was only opened after the container slot 

was filled. Now, in order to separate this composition logic from the host 

implementation, we extract it into a self-contained composition behavior. As the View 

slot is depending on the Container slot's composition state, we call the behavior 

DependentSlotBehavior. 
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Listing 3.10 shows how the DependentSlotBehavior is attached to the Container slot of the 

Workbench extension. The DependentSlotBehavior uses two slots: it reacts to events on the 

Container slot and performs operations on the View slot. As the behavior is attached to 

the Container slot, it can retrieve this slot via the behavior base class (see property 

BehaviorSlot in Listing 3.11). The dependent View slot is passed as an argument to the 

behavior’s constructor. Please note how composition behaviors simplify the reuse of 

composition logic. Composition logic that is extracted to a behavior can be used just by 

putting this single line of code into the constructor of a host extension. 

 

Figure 3.25 shows how the DependentSlotBehavior works: (1) when it receives a Plugged 

event from the Container slot, (2) it performs the Open operation on the View slot; vice 

versa, (3) when it receives an Unplugging event from the Container slot, (4) it performs 

the Close operation on the View slot. As the View slot must not be opened without a 

container, e.g., if other extensions try to open it with programmatic composition, the 

DependentSlotBehavior registers an event handler for the CanOpen event of the View slot 

to allow or block the Open composition operation as follows: (5) when the behavior 

receives a CanOpen event from the View slot, (6) it checks the composition state, and 

blocks the Open operation if no contributor is plugged in the Container slot. 

[Extension] 
[Plug("Application")] 
[Slot("View")] 
[Slot("Container")] 
class Workbench : ExtensionBase, IApplication { 
  Workbench() { 
    Slots["Container"].Behaviors.Add( 
        new DependentSlotBehavior(Slots["View"])); 
  } 
} 

Listing 3.10: Attaching a composition behavior to a slot 
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Listing 3.11 shows the implementation of the DependentSlotBehavior. Every composition 

behavior is derived from the common base class CompositionBehavior and inherits the 

property BehaviorSlot, which is a reference to the slot to which the behavior is attached. 

The constructor of the DependentSlotBehavior sets the dependent slot that should be 

controlled by the behavior. When the behavior is attached to a slot, Plux calls the Bind 

method, which registers the CanOpenDependentSlot method for the CanOpen event of 

the dependent slot. When the behavior is detached from a slot, Plux calls the Unbind 

method. 

 

The CanOpenDependentSlot method checks the composition state of the behavior slot 

and blocks the Open operation if no contributor is plugged. In order to react to events 

of the behavior slot, a behavior overrides the relevant event handler methods. The 

DependentSlotBehavior overrides the OnPlugged and OnUnplugging methods: in 

OnPlugged it opens the dependent slot when the first contributor is plugged into the 

class DependentSlotBehavior : CompositionBehavior { 
  Slot dependentSlot; 

  DependentSlotBehavior(Slot dependentSlot) { 
    this.dependentSlot = dependentSlot; 
  } 

  override void Bind() { 
    dependentSlot.CanOpen += CanOpenDependentSlot; 
  } 
  override void Unbind() { 
    dependentSlot.CanOpen -= CanOpenDependentSlot; 
  } 

  boolean CanOpenDependentSlot(SlotEventArgs args) { 
    return BehaviorSlot.PluggedPlugs.Count > 0; 
  } 

  override void OnPlugged(PlugEventArgs args) { 
    if (BehaviorSlot.PluggedPlugs.Count == 1) { dependentSlot.Open(); } 
  } 
  override void OnUnplugging(PlugEventArgs args) { 
    if (BehaviorSlot.PluggedPlugs.Count == 1) { dependentSlot.Close(); } 
  } 
} 

Listing 3.11: Implementation of a self-contained composition behavior 

Figure 3.25: Composition behavior performing and blocking composition operations 

depending on composition events and the composition state 
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behavior slot; in OnUnplugging it closes the dependent slot when the last contributor is 

about to be unplugged from the behavior slot. This ensures that the dependent slot is 

opened only when at least one contributor is plugged into the behavior slot. 

Listing 3.12 shows the base class for composition behaviors with the event handlers 

that are called in reaction to the composition events. The listing shows only the Bind 

and the Unbind methods as well as the handlers for the events that are raised during 

the composition operations Activate, Open, and Unplug. Similar handlers exist for all 

other composition events (see Figure 3.13 on page 52). In the base class, the CanCompose 

event handlers (i.e., CanActivate, CanOpen, or CanUnplug) return true by default. All 

other event handlers are implemented empty, so that subclasses only need to override 

those methods that are relevant to them. 

 

Rule-based Composition Behaviors 

Many composition behaviors only apply to a single composition operation (e.g., Plug), 

i.e., they only react to composition events of one specific composition operation, they 

only retrieve the composition state composed by this operation, and they perform or 

block only this operation (although their composition logic usually differs from the 

composition logic of other behaviors). On the other hand, many behaviors implement 

the same composition logic, but apply to different composition operations. In order to 

increase reusability, rule-based composition behaviors extract the implementation of 

Listing 3.12: Composition event handlers in the base class for composition behaviors 

abstract class CompositionBehavior { 
  Slot behaviorSlot; 
  ... 

  void Bind(Slot slot) {  
    behaviorSlot = slot; 
    Bind(); 
  } 
  void Unbind(Slot slot) { /* not shown */ } 

  virtual void Bind() { } 
  virtual void Unbind() { } 

  virtual boolean CanActivate(ExtensionEventArgs args) { return true; } 
  virtual void Activating(ExtensionEventArgs args) { } 
  virtual void Activated(ExtensionEventArgs args) { } 

  virtual boolean CanOpen(SlotEventArgs args) { return true; } 
  virtual void Opening(SlotEventArgs args) { } 
  virtual void Opened(SlotEventArgs args) { } 

  ... 

  virtual boolean CanUnplug(PlugEventArgs args) { return true; } 
  virtual void Unplugging(PlugEventArgs args) { } 
  virtual void Unplugged(PlugEventArgs args) { } 
} 
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the composition logic from a composition behavior into a reusable generic composition 

rule. 

The DependentSlotBehavior, for example, only depends on whether the behavior slot is 

filled and whether Plugged or Unplugging events have occurred. The actual 

composition logic controlling the target slot, however, can be extracted into a separate 

rule, so that both, the composition rule and the composition behavior, can be reused 

with other behaviors and rules (see examples below). As the DependentSlotBehavior 

concerns the Plug operation of the behavior slot, and the composition logic opens and 

closes the target slot, we separate this behavior into a rule-based PlugBehavior and a 

generic OpenSlotRule. In doing so, the OpenSlotRule can now also be combined with 

another rule-based behavior, e.g., with a TagBehavior, to open and close a slot 

depending on whether a contributor is tagged in the behavior slot. Vice versa, the 

PlugBehavior can also be reused with other composition rules. 

Listing 3.13 shows how to attach the rule-based PlugBehavior with the OpenSlotRule on 

the Container slot of the workbench. This rule-based behavior establishes the same 

composition result as the DependentSlotBehavior from Listing 3.10 and Figure 3.25. 

 

In order to allow composition rules to be reused with different behaviors, rule-based 

behaviors translate their composition events and their composition state into generic 

composition events and a generic composition state and forward them to their 

composition rule. The composition rule implements its composition logic based on 

generic composition events and a generic composition state. 

Figure 3.26 on the next page shows how the rule-based PlugBehavior cooperates with 

the OpenSlotRule to ensure that the workbench's View slot is only opened if a container 

is plugged: (1) when the PlugBehavior receives the Plugged event from the Container slot, 

(2) it translates it into a generic Composed event and forwards it to the OpenSlotRule, 

which (3) opens the View slot. Vice versa, (4) when the PlugBehavior receives the 

Unplugging event from the Container slot, (5) it translates it into a generic Decomposing 

event and forwards it to the OpenSlotRule, which (6) closes the View slot. If someone 

tries to open the View slot, (7) the OpenSlotRule receives a CanOpen event, and 

(8) checks the generic composition state by retrieving the behavior's IsComposed 

property, which (9) is translated into the PlugBehavior-specific IsPlugged operation that 

checks whether a contributor is plugged into the Container slot. 

[Extension] 
... 
class Workbench : ExtensionBase, IApplication { 
  Workbench() { 
    Slots["Container"].Behaviors.Add( 
        new PlugBehavior(new OpenSlotRule(Slots["View"]))); 
  } 
  ... 
} 

Listing 3.13: Binding a rule-based composition behavior to a slot 
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Figure 3.27 shows an example of how the PlugBehavior can be reused with a different 

composition rule. As the workbench can only deal with a single container at a time, we 

want to make sure that the number of plugged containers is limited to one. A solution 

for this is to unplug an already plugged container, if another container is plugged into 

the workbench. This can be done with a PlugBehavior in combination with a ReplaceRule 

for the Container slot: (a) when the TabContainer is plugged, the behavior notifies its 

ReplaceRule that a new contributor was composed. In (b) the ReplaceRule reacts to the 

notification and sends a generic Decompose command to the PlugBehavior, which is 

translated to an Unplug command that finally unplugs the MdiContainer. 

Figure 3.26: Rule-based composition behavior translating composition events and 

the composition state of a composition operation to a composition rule 
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Listing 3.14 shows that the workbench can also attach multiple behaviors to its 

Container slot, e.g., a PlugBehavior with an OpenSlotRule and a PlugBehavior with a 

ReplaceRule. The ReplaceRule unplugs previously plugged extensions, as soon as new 

extensions get plugged and the maximum number of plugged extensions is reached. 

The maximum can be set through a parameter in the rule's constructor. An additional 

parameter for the replace mode determines if the ReplaceRule should unplug previously 

plugged extensions just before or just after a new extension was plugged. The 

ReplaceMode.AfterComposition specifies that this rule should not perform the 

replacement until the new extension was plugged. If multiple behaviors are attached to 

a slot, they are executed in the order in which they were attached. In the example of 

Listing 3.14, however, the behaviors are independent, thus the order does not matter. 

 

The example in Figure 3.28 on the next page shows how we can reuse the ReplaceRule, 

however this time in combination with a TagBehavior. For this, we disclose a further 

improvement of our workbench example. In order to use the composition state for 

keeping track of the current focus view, we define an additional tag for the 

workbench's View slot, namely the Focus tag. The view, which is tagged with this tag, 

has the focus. Since only one view can have the focus at the same time, every time 

[Extension] 
... 
class Workbench : ExtensionBase, IApplication { 
  Workbench() { 
    Slots["Container"].Behaviors.Add( 
      new PlugBehavior(new OpenSlotRule(Slots["View"]))); 
    Slots["Container"].Behaviors.Add( 
      new PlugBehavior( 
        new ReplaceRule<Plug>(1, ReplacementMode.AfterComposition))); 
  } 
  ... 
} 

Listing 3.14: Attaching multiple composition behaviors to a slot 

Figure 3.27: A PlugBehavior with a ReplaceRule ensures that there 

is only one contributor plugged at the same time 
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when a new view gets the Focus tag, the TagBehavior with the ReplaceRule removes the 

previous Focus tag. In Figure 3.28 (a) the Email view is tagged with Menu and Focus. As 

described in Section 3.3.1 on page 45, the Menu tag indicates which views should be 

visible in the view menu, the newly added Focus tag specifies that the Email view is 

currently focused. As soon as the Payroll view is tagged with Focus in (b), the Payroll 

view is focused in the workbench window and the TagBehavior with the ReplaceRule 

removes the Focus tag from the Email view. 

The TagBehavior with the ReplaceRule, should only replace the Focus tag but not the 

Menu tag, if multiple views are tagged with Menu. Therefore, beside the composition 

rule, the rule-based TagBehavior has a further parameter, which filters the tag to which 

the behavior should be applied. In Listing 3.15 we attach the TagBehavior with the 

ReplaceRule to the Container slot and use the "Focus" parameter to set a filter for the 

Focus tag. 

Listing 3.15: Binding a TagBehavior with a filter for the tag 

to which the behavior is applied 

[Extension] 
... 
class Workbench : ExtensionBase, IApplication { 
  Workbench() { 
    ... 

    Slots["View"].Behaviors.Add( 
      new TagBehavior("Focus", 
        new ReplaceRule<Tag>(1, ReplacementMode.AfterComposition))); 
  } 
  ... 
} 

Figure 3.28: Setting the focus of a view by the use of 

the composition state with the Focus tag 
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Listing 3.16 shows the implementation of the rule-based PlugBehavior. All rule-based 

composition behaviors inherit from their base class RuleBasedBeahvior, which has a type 

parameter denoting the meta-object to which the composition operation should apply. 

The constructor takes a CompositionRule and passes it to its base class, where it is 

stored. Using the ComposedObjects property, the composition rule can retrieve the 

behavior's composition state in a generic way. In the case of PlugBehavior, this is the 

collection of plugs, which are plugged into the behavior slot. If the CompositionRule 

needs to perform a composition operation, it calls the behavior's generic Compose or 

Decompose methods, which are translated into the PlugBehavior-specific Plug or Unplug 

operations. The composition events CanPlug, Plugging, Plugged, CanUnplug, 

Unplugging, and Unplugged are forwarded to their generic counterparts in the 

composition rule. The implementation, shown in Listing 3.16, is a simplified version; 

the real implementation has additional methods to retrieve candidates for composition, 

i.e., meta-objects that are currently available and could be composed. Composition 

candidates can be used, for example, in UI-bound composition behaviors, where the 

class PlugBehavior : RuleBasedBehavior<Plug> { 
  public PlugBehavior(CompositionRule<Plug> rule) : base(rule) { } 

  override Collection<Plug> ComposedObjects { 
    get { return BehaviorSlot.PluggedPlugs; } 
  } 

  override void Compose(Plug plug) { 
    BehaviorSlot.Plug(plug); 
  } 
  override void Decompose(Plug plug) { 
    BehaviorSlot.Unplug(plug); 
  } 

  override bool CanPlug(CompositionEventArgs args) { 
    return Rule.CanCompose(args.Plug); 
  } 
  override void Plugging(CompositionEventArgs args) { 
    Rule.Composing(args.Plug); 
  } 
  override void Plugged(CompositionEventArgs args) { 
    Rule.Composed(args.Plug); 
  } 

  override bool CanUnplug(CompositionEventArgs args) { 
    return Rule.CanDecompose(args.Plug); 
  } 
  override void Unplugging(CompositionEventArgs args) { 
    Rule.Decomposing(args.Plug); 
  } 
  override void Unplugged(CompositionEventArgs args) { 
    Rule.Decomposed(args.Plug); 
  } 
} 

Listing 3.16: Implementation of a rule-based composition behavior 



The Plux Component Model 

74 

composition is controlled by the user via the user interface (see UI-boundend 

Composition Behaviors below). 

The implementation of the ReplaceRule is shown in Listing 3.17. Composition rules are 

derived from the common base class CompositionRule. The base class CompositionRule 

maintains a list of composed objects (e.g., contributors in a slot). The class ReplaceRule 

decomposes the composed object that was composed first if the maximum number of 

composed objects (denoted by the field maximum) is exceeded. It has also a field for the 

replacement mode, which specifies if the rule should fire before, or after a composition 

event. For this the rule overrides both, the Composing and the Composed event handlers. 

Depending on the replacement mode, one of these methods checks whether the 

maximum amount of composed objects is already reached and calls the method 

Decompose from the base class before or after a composition event if required. The 

Decompose method gets the first composed object as an argument. The base class 

forwards the call to the composition behavior, which finally translates the generic 

composition operation into a concrete composition operation, e.g., Unplug if the rule is 

combined with a PlugBehavior. 

 

The Plux composition library implements a rule-based composition behavior for every 

composition operation. Additionally, it implements a set of predefined composition 

rules, which cover common composition patterns, such as limiting the cardinality of 

enum ReplacementMode { 
  BeforeComposition, 
  AfterComposition 
} 
 
class ReplaceRule<T> : CompositionRule<T> { 
  int maximum; 
  ReplacementMode replacementMode; 

  ReplaceRule(int maximum, ReplacementMode replacementMode) { 
    this. maximum = maximum; 
    this.replacementMode = replacementMode; 
  } 

  override void Composing(T metaObject) { 
    if (replacementMode == ReplacementMode.BeforeComposition 
        && ComposedObjects.Count == maximum) { 
      Decompose(ComposedObjects[0]); 
    } 
  } 
  override void Composed(T metaObject) { 
    if (replacementMode == ReplacementMode.AfterComposition 
        && ComposedObjects.Count > maximum) { 
      Decompose(ComposedObjects[0]); 
    } 
  } 
} 

Listing 3.17: Implementation of a composition rule 
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contributors either through replacing or through denying them, ensuring a certain 

composition order, or filtering contributors depending on certain criteria, e.g., on a 

value provided by a parameter of a contributor's plug or by the vendor of a 

contributor. 

UI-bound Composition Behaviors 

In self-contained composition behaviors, the composition logic is implemented within 

the behavior itself. In rule-based composition behaviors, the composition logic is 

extracted into a composition rule. Finally, in UI-bound composition behaviors, the 

composition logic is provided by the user of an application, i.e., the user triggers 

composition operations through the application's user interface. Vice versa, the user 

interface is updated by the behavior on changes in the composition state. Therefore, 

instead of a composition rule, the constructor of an UI-bound behavior gets an UI 

control as an argument, which is bound to the composition state by the behavior. 

In the example of Figure 3.28 on page 73 the workbench receives the Tagged event for 

the Focus tag to focus the tagged view. To ensure that only one view is tagged with 

Focus at the same time, we attached a TagBehavior in combination with a ReplaceRule to 

the View slot (see Listing 3.15). However, the ReplaceRule only ensures that just a single 

contributor has the Focus tag at the same time, but it does not focus the tagged view in 

the workbench, nor it updates the Focus tag in the composition state when the user 

changes the focus of a view by clicking on a view window in the workbench. This 

implementation has to be done programmatically in the workbench. In order to extract 

this implementation from the workbench too, we can use an UI-bound behavior that 

binds the Focus tag to the user interface of the workbench. 

Figure 3.29 on the next page shows how a UI-bound behavior works that binds the 

composition state of the workbench's View slot to the workbench's container control. 

The UI-bound behavior, which is called ViewBehavior, is attached to the View slot and 

handles the slot's Tagged, Plugged and Unplugging events. When a view is tagged with 

Focus, the ViewBehavior focuses the tagged view in the container, when a view is 

plugged, the behavior opens it in the container, and when a view is about to be 

unplugged, it closes it in the container. For this, the ViewBehavior also reacts to the UI 

events FocusChanged and ViewClosed from the container. The behavior handles those 

events and updates the composition state accordingly.  

In Figure 3.29 (a) the Email view and the Payroll view are plugged into the View slot, 

therefore both views are opened. As the Payroll view currently has the focus, it is 

tagged with the Focus tag. When the user clicks on the Email view in (a), in (b) the 

container focuses the view and the UI-bound behavior moves the Focus tag from the 

Payroll view to the Email view. When the user closes a view by clicking on its close 

button in (b), the behavior reacts on the container's ViewClosed event and (c) unplugs 

the view from the View slot. Furthermore, as the Email view is closed now, the 

container focuses the Payroll view and the behavior sets the Focus tag to the Payroll 

view. As the Email view is not plugged to any slot anymore, it was deactivated by the 
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composer. Listing 3.18 on page 80 shows the final implementation of the workbench 

example, which includes the code that shows how the ViewBehavior is attached to the 

workbench's View slot. 

As we have bound the composition state of the View slot to the workbench's container 

control, the container can now be controlled via the composition state of the View slot. 

Thus, if we now bind the View menu and the Window menu to the View slot too, views 

can be controlled via these menus, but without having any dependencies between the 

menus and the container. Similar to that, of course, views also can be controlled with 

any other user controls or tools that are bound to the View slot. 

In Figure 3.30 we use two further UI-bound behaviors to bind the composition state of 

the View slot to the view menu and to the window menu. The view menu displays an 

entry for every view contributor that is tagged with the Menu tag. The user can open or 

close a view by clicking on these menu entries, i.e., clicking on such an entry either 

plugs or unplugs a view, while the ViewBehavior, which is described above, opens or 

closes the view in the container. In the view menu, open views are marked with a 

checkmark. The window menu displays an entry for each open view, i.e., for each 

plugged view. The focused view is marked with a checkmark, i.e., the window menu 

marks the view that is tagged with the Focus tag. By clicking on an entry in the window 

menu the user can set the focus to the corresponding view. For this, the UI-bound 

behaviors for the view menu and for the window menu get a reference to the according 

menu control via their constructor and add or remove menu items depending on the 

composition state. Furthermore, these UI-bound behaviors react on the menu items' 

Click event and update the composition state accordingly. 

Figure 3.29: Binding the composition state to the user interface of an application 
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As in Figure 3.30 (a) no views are tagged or plugged to the View slot, the view menu 

and the window menu are empty. In (b) the Email view and the Payroll view are tagged 

with Menu and therefore displayed within the view menu. When the user clicks on the 

view menu's Payroll entry, in (c) the behavior plugs the view into the View slot and the 

Payroll menu entry is marked with a checkmark. Additionally, the window menu 

displays an entry for the plugged view. As the Payroll view was just opened, it got the 

focus in the container and therefore was tagged with the Focus tag. Thus, the menu 

entry of the window menu is marked with a checkmark too. When the user clicks on 

the menu entry for the Email view, in (d) the same as with the Payroll view happens 

with the Email view. When the user clicks on the Payroll entry in the window menu, in 

(e) the behavior moves the Focus tag to the Payroll view and thus the container focuses 

this view. If the user clicks on the menu entry of the opened Payroll view in the view 

menu, the behavior unplugs the view, which causes the view to be unplugged in (f) 

and thus closed. As the Payroll view is unplugged now, the checkmark for this view in 

the view menu is removed and the entry in the window menu is removed, too. 

Figure 3.30: Modifying the composition state via the user interface 
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Listing 3.18 shows the final implementation of the workbench example, which 

combines automatic composition, programmatic composition, and behavior-guided 

composition in order to show plugged views within an exchangeable container and to 

control views via the view menu and the window menu. The parts, which were not 

described until now, are highlighted. In the constructor we create the window for the 

workbench, the view menu, and the window menu. Additionally, we attach a 

PlugBehavior with the OpenSlotRule and a PlugBehavior with the ReplaceRule to the 

Container slot. The ViewMenuBehavior binds the composition state of the View slot to the 

view menu and the WindowMenuBehavior binds the composition state of the View slot to 

the window menu. In the attribute for the Container slot we register the event handler 

method ContainerPlugged and ContainerUnplugging. When a container is plugged, the 

[Extension] 
[Slot("Container", Plugged="ContainerPlugged, 
                   Unplugging="ContainerUnplugging")] 
[Slot("View", AutoOpen=false)] 

class Workbench : ExtensionBase, IApplication { 
  Window window; 
  Menu viewMenu 
  Menu windowMenu; 
  ViewBehavior viewBehavior; 

  Workbench() { 
    window = ... 
    window.Closed += WindowClosed; 
    viewMenu = ... 
    windowMenu = ... 
    Slots["Container"].Behaviors.Add( 
      new PlugBehavior(new OpenSlotRule(Slots["View"]))); 
    Slots["Container"].Behaviors.Add( 
      new PlugBehavior( 
        new ReplaceRule<Plug>(1, ReplacementMode.AfterComposition))); 
    Slots["View"].Behaviors.Add(new ViewMenuBehavior(viewMenu)); 
    Slots["View"].Behaviors.Add(new WindowMenuBehavior(windowMenu)); 
  } 

  void ContainerPlugged(CompositionEventArgs args) { 
    IContainer container = (IContainer) args.Plug.Extension.Object; 
    AddConainer(container.Control); 
    viewBehavior = new ViewBehavior(container); 
    Slots["View"].Behaviors.Add(viewBehavior); 
  } 

  void ContainerUnplugging(CompositionEventArgs args) { 
    IContainer container = (IContainer) args.Plug.Extension.Object; 
    Slots["View"].Behaviors.Remove(viewBehavior); 
    viewBehavior = null; 
    RemoveContainer(container.Control); 
  } 

  void AddContainer(Control containerControl) { /* not shown*/ } 

  void RemoveContainer(Control containerControl) { /* not shown*/ } 
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event handler ContainerPlugged adds the container control to the window control and 

creates a ViewBehavior that binds the composition state of the View slot to the currently 

plugged container. Vice versa, when a container is about to be unplugged, the event 

handler ContainerUnplugging detaches the ViewBehavior from the View slot and removes 

the container from the window. When the Workbench is plugged into the Plux core's 

Application slot, the method Start is called. Start opens the window for the workbench. 

When the window is closed, the event handler WindowClosed uses programmatic 

composition to destroy the Workbench extension, which includes decomposing all its 

contributors. 

For simplicity reasons, we omitted some details of the real workbench implementation. 

For example, we did not show that the menu is implemented as an extension itself, 

which can be extended with pluggable menu entries. Furthermore, we did not cover 

how we handle the customizable order of menu entries, which is implemented with an 

order parameter that must be provided by the plug of each view and the plug of each 

pluggable menu entry. 

3.3.7 User-guided composition 

Developers can influence the composition process using programmatic composition 

and composition behaviors. However, with user-guided composition even 

administrators and users can control the composition of an application. Since Plux 

maintains the composition state, composition tools can retrieve the composition state, 

present it to the user, and modify it. Plux ships with several composition tools, such as 

a Visualizer, which presents the composition state in a graphical manner; a Console, 

which provides text-based access to the composition state, a Persistor, which persists 

and restores the actual composition state; or a Scripting Engine, which allows the 

execution of predefined composition scripts. Furthermore, we implemented some 

experimental composition tools for user-guided composition that compose an 

application based on the available hardware, e.g., we implemented a game, which gets 

recomposed based on the pieces on a playing field. 

  void Start() { 
    window.Show(); 
  } 

  void WindowClosed() { 
    Extension.Destroy(); 
  } 
} 

Listing 3.18: Final implementation of the Workbench extension using automatic, 

programmatic, and behavior-guided composition 
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Visualizer 

The Visualizer is a workbench view, which draws a graph of the current composition 

state with extensions, slots, plugs, and their connections. It supports developers, 

administrators, and users in understanding the composition of an application. 

Furthermore, the visualizer allows the user to click on each meta-object representation 

in the graph in order to see detailed information about the meta-object's state and to 

modify its composition state. 

Figure 3.31 shows how the visualizer presents a composition state of an application 

(note, that this application happens to contain the visualizer itself as an extension). In 

the example, the user clicked on the View slot of the Workbench extension to see its 

options. In Properties the user can retrieve and modify the composition configuration of 

the slot, for example, he can enable or disable automatic composition for this slot. With 

the composition operations below, the user can modify the composition state. As the 

View slot is open, the Open composition operation is disabled. For the operations Tag, 

Untag, Plug, and Unplug, the visualizer provides a list of all possible contributors, to 

which the operation can be applied. As the Visualizer view is the only plugged 

contributor in the View slot, the Unplug operation lists this contributor as the only 

possible candidate to be unplugged. 

 

Console 

The Console provides a text-based interface to the composition state of an application. It 

supports commands to retrieve and to modify the composition state. In order to make 

the console customizable and extensible, its commands are implemented as separate 

extensions, which are plugged to the console via its Commands slot. 

Figure 3.31: The visualizer presents the current composition state in a graphical 

manner and allows users to modify the composition state 
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In Figure 3.32, the console view is extended with two Commands contributors. While 

the RuntimeCommands implements commands for retrieving and modifying the 

composition state, the LayoutCommands extend the Console with commands for 

modifying the arrangement of controls in views that use the Plux Layout Library (see 

Section 6.3 Runtime Libraries) to build a component-based user interface from control 

extensions. The example in Figure 3.32 shows the get-extension command that lists all 

extensions, which match an optional filter, and the plug command that performs the 

Plug operation for a host and a contributor. 

 

 

Persistor 

The Persistor saves the current composition state, in order to restore it at a later time. 

This is useful to save the composition state at one time and continue work at another 

time with the same composition as before. The persistor can also be used if an 

application error occurs. It can then save the actual composition state to a file and 

transfer it to the vendor of the application, so that the vendor can reproduce the user's 

composition state on his own machine and look at the error. 

Scripting Engine 

The Scripting Engine allows executing scripts that perform composition operations in 

order to establish a certain composition state of an application. Applications can thus 

be easily reconfigured at run time to customize them for a current working task. Scripts 

can be triggered, for example, by clicks on the user interface or by starting them via the 

Plux console. 

Figure 3.32: The console provides a text-based interface to 

the composition state of an application 
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3.4 Interaction Standard 

The interaction standard specifies how extensions communicate among each other, and 

how they exchange data. As extensions can retrieve references to the extension object 

of other extensions, hosts can call their contributors' methods directly. However, 

developers must not expect that the referenced extension object is an instance of the 

class that was marked with the extension attribute. In some situations, e.g. when Plux 

is started with certain security constraints, Plux uses proxy objects instead of the 

original extension objects. Proxy extension objects forward calls to the actual 

implementation of an extension. 

3.4.1 Thread Management 

The Plux interaction standard specifies a dedicated runtime thread, in which all 

operations concerning the component model must be performed. Thus, extensions 

must be executed in the runtime thread if they retrieve the composition state, if they 

call methods of other extensions, and if they perform composition operations in 

programmatic composition. As Plux raises all composition events in the runtime 

thread, and as method calls beyond extension boundaries must be performed within 

the runtime thread, developers need not worry about thread synchronization issues, 

such as race conditions or deadlocks and can be sure that the composition state is not 

modified unexpectedly from a background thread. 

If an extension implements a long running task using a worker thread, it must ensure 

that the worker thread does not escape the extension's boundaries. Such extensions can 

use the Plux dispatcher to dispatch their results back into the runtime thread. 

Furthermore, extensions that listen to events that are raised from other threads than the 

runtime thread (e.g., file system events from the operating system) can use the 

dispatcher to handle such events in the runtime thread. The dispatcher provides an 

interface for checking whether the current code is executing in the runtime thread and 

to dispatch calls either synchronously or asynchronously into the runtime thread. 

3.4.2 Exception Handling 

Plux ensures that its runtime does not crash if any unhandled exception occurs. As 

Plux performs all operations in the runtime thread, each executed code was initiated 

from a dispatcher operation. In the case of an unhandled exception, the dispatcher 

operation gets aborted, the runtime logs the exception, and raises an 

UnhandledException event. Afterwards, the dispatcher continues its work with the next 

dispatcher operation in the queue. 
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3.5 Customization Standard 

Extensions consist of code and metadata, which are discovered by the discoverer, and 

which cannot be modified during run time. However, the Plux customization standard 

defines a settings model for extensions, by which extensions can be enriched with 

configurable settings. Extension settings are discovered by an exchangeable settings 

discoverer and can be retrieved via the meta-object of an extension. Vice versa, 

extension settings can be modified, whereby modifications are written back to the 

settings source. If an extension writes to its settings, but no settings were discovered, 

the setting discoverer creates a settings source on demand. The Plux infrastructure 

implements a settings discoverer for XML files and a settings discoverer that retrieves 

the settings from a database. 

Listing 3.19 shows an example for an XML settings file. The example shows the settings 

for the Visualizer extension, which is described in Section 3.3.7 on page 80. The example 

file only contains settings for a single extension; however, every setting file can contain 

settings for multiple extensions from different plugins. The plugin element's name 

attribute references the plugin Plux.Visualizer and the name attribute of the child 

element extension references the Visualizer extension, which is implemented in the 

Plux.Visualizer plugin. Settings are specified with the setting element, which maps from 

a key to a value, or with the list element, which maps from a key to a list of values, or 

with the dictionary element, which maps from a key to a dictionary of settings. Setting 

dictionaries again can contain setting elements, list elements, and further dictionary 

elements. Values can have any simple type such as Boolean, Integer, or Double, as well as 

types for which a type converter is implemented. 

<?xml version="1.0" encoding="utf-8"?> 
<settings xmlns="http://ase.jku.at/plux/SettingsSchema/"> 
  <plugin name="Plux.Visualizer"> 

    <extension name="Visualizer"> 
      <setting key="ShowDisplayNames" value="True" /> 
      <setting key="ShowExtensionId" value="False" /> 
      ... 

      <list key="IgnoreExtensions" > 
        <item value="Console" /> 
      </list> 

      <dictionary key="DisplayNames"> 
        <setting key="Application" value="Ap" /> 
        <setting key="Workbench" value="Wo" /> 
        ... 
      </dictionary> 
    </extension> 

  </plugin> 
</settings> 

Listing 3.19: XML settings file for the Visualizer extension 
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Listing 3.20 shows how the Visualizer extension uses the settings, which are specified in 

Listing 3.19, to configure the appearance of its graph. Extension settings are retrieved 

via the Settings property of the extension's base class ExtensionBase. The property 

ShowDisplayNames specifies, if the graph of the Visualizer should display the original 

extension names, or if a special display name should be used instead, e.g., using the 

display name "Wo" instead of the extension name "Workbench". As the value of this 

property is specified in an extension setting, it is retrieved via the Settings property. 

The method GetValue gets a key and a default value as arguments. The key maps to the 

stored value. The default value is returned, if the key was not found. Furthermore, the 

default value provides the return type for the generic GetValue method. The setter of 

ShowDisplayNames uses the SetValue method to store the assigned value back to the 

settings source. 

The DisplayNames property returns a dictionary, which stores the mappings from 

original extension names to their display names. The dictionary is retrieved using the 

GetDictionary method. If the key "DisplayNames" was not found, a new dictionary is 

[Extension] 
... 
class Visualizer : ExtensionBase, IView { 
  ... 
  bool ShowDisplayNames { 
    get { Settings.GetValue("ShowDisplayNames", true); } 
    set { Settings.SetValue("ShowDisplayNames", value); } 
  } 
  SettingDictionary DisplayNames { 
    get { Settings.GetDictionary("DisplayNames"); 
  } 
  SettingList IgnoreList { 
    get { Settings.GetList("IgnoreList"); } 
  } 

  void SetDisplayName(Extension e, String displayName) { 
    DisplayNames.SetValue(e.Name, displayName); 
  } 
  void IgnoreExtension(Extension e) { 
    IgnoreList.AddValue(e.Name); 
  } 

  void Draw() { 
    ... 
    foreach(Extension e in extensions) { 
      if (IgnoreList.Contains(e.Name)) { continue; } 
      String extensionName = ShowDisplayNames 
        ? DisplayNames.GetValue(e.Name, e.Name) : e.Name; 
      ... 
    } 
  } 
   
} 

Listing 3.20: Retreiving and modifying extension settings 
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created. The IgnoreList property returns a list of extension names for extensions that 

should be hidden in the graph.  

The method SetDisplayName stores a new display name for an extension. As settings 

dictionaries keep track of modifications, any modifications are written back to the 

settings source. Similar to this, the method IgnoreExtension stores extension names in a 

SettingList. Modifications are written to the settings source, too. 

Finally the Draw method uses the settings: it uses the IgnoreList property to skip all 

extensions whose names are in the list, it uses the ShowDisplayNames property to decide 

whether to show the original extension name or the display name, and it uses the 

DisplayNames property to retrieve the display names for extensions, whereat the 

extension name is both, the key and the default value for the GetValue method. 
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4 Plugin-based Distributed Multi-user Web 

Applications 

This chapter presents the idea of applying the plugin approach to web 

applications in order to enable them to be extended and customized by the end 

users. Users should be enabled to adapt web applications for their specific needs 

and use their own set of components. User-specific components can be installed 

either on the server-side in an individual user scope, or on the client-side (i.e., 

on the user's computer), by which a web application becomes a distributed web 

application. A case study demonstrates the benefits of building extensible web 

applications in several usage scenarios. 

Web applications face similar problems as desktop applications: if they get big and 

feature-rich, they become hard to understand and difficult to maintain. Current web 

applications are hardly customizable and usually not extensible by end users. 

Furthermore, they cannot access the local hardware of client computers. In order to 

solve these problems, we applied the plugin approach also to web-based software. 

While the original version of Plux targeted single-user desktop applications, this thesis 

presents a number of enhancements so that Plux can now also be used to build plugin-

based distributed multi-user web applications. 

 Plugin-based. Plux allows building extensible web applications. Extensions can 

either be installed by the administrator or even by the end user. Depending on 

their type of integration, extensions can be classified as: a) Server-side extensions 

that are installed and executed on the server, b) Client-side extensions that are 

installed and executed on the client, and c) Sandbox extensions that are installed 

on the server, but transferred to the client on demand to be executed there in a 

sandbox. 

 Distributed. Plux composes extensions into a coherent web application, 

regardless of if they are executed locally on the web server, remotely on the 

client-side computer, or remotely on a different server. Whether extensions are 

installed locally or remotely, they are implemented in the same way and thus 

Plugin-based Distributed 
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the same extension can be reused in different environments. This gives 

developers and users a seamless experience. 

 Multi-user. Plux maintains different user scopes. Extensions can be made 

available for all users of a web application, for a group of users, or just for a single 

user. Thus every user can have an individual set of components, i.e., an 

individual composition state. Authorized users can install their extensions on 

the server, while non-authorized users can still extend a web application by 

installing extensions on the client. 

 Web application. Plux provides an infrastructure for hosting component-based 

applications on a web server so that they can be accessed via a web browser. 

The infrastructure cares about thread and session management and provides a 

lightweight web UI library for building distributed user interfaces, where user 

controls can be executed on different computers. 

We describe several usage scenarios that demonstrate the benefits for extensible web 

applications. As a running example we use a time recorder web application. The usage 

scenario covers the distribution of extensions as server-side, client-side, and sandbox 

extensions, as well as the multi-user support via individual user scopes. 

The time recorder can be used to record and evaluate working hours. Figure 4.1 shows 

the basic version of its composition state. Features are implemented as extensions, and 

the TimeRecorder extension is the host for the main features. The basic version consists 

of two features: one for recording working hours and one for computing and 

displaying statistics for recorded working hour. For both features, the implementation 

of the business logic is separated from the user interface. The RecorderControl extension 

provides the user interface that allows the user to start and stop the Recorder extension. 

The Recorder is plugged into the RecorderControl, generates time records, and stores 

them using the DataStore extension. As the DataStore is a shared extension, which is 

plugged into the Recorder and into the Statistics extension, the Statistics extension can 

retrieve time records and can compute the statistics that are queried and displayed via 

the StaticsControl. The StatisticsControl renders the user interface for the statistics 

feature and is plugged into the TimeRecorder host. 

 

 
Figure 4.1: Base composition of the time recorder web application 
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The TimeRecorder extension is a view that can be plugged into the Web Workbench 

extension, which is very similar to the workbench described in Chapter 3. However, to 

keep things simple, extensions that are irrelevant for the usage scenarios (e.g., 

Discoverer or Workbench) are not shown in the figures of this chapter. 

Figure 4.2 shows the user interface of the time recorder web application. The 

RecorderControl provides buttons for starting, stopping, and pausing records; it also 

displays the current date as well as the start time of the current record. The 

StatisticsControl shows the time records that match to a selected filter, and also shows 

the result of a statistical value, which can be selected via the statistics button. 

 

 

As the time recorder is extensible, the user interface must be extensible as well. Control 

contributors, such as RecorderControl and StatisticsControl, declare their desired size and 

position in their metadata. The Plux Layout Library, which is implemented by the Plux 

composition infrastructure, retrieves these layout values and arranges the controls 

accordingly. 

The composition shown in Figure 4.1 is the base configuration of the web application, 

which is available to all users. All these extensions are server-side extensions, i.e., they 

are installed and executed on the web server. In the following sections, we show how 

users can extend this web application with user-specific extensions. We describe how 

server-side, client-side and sandbox components can be integrated and explain for 

which scenarios they are suitable. 

4.1 Server-side Extensions 

Let us assume that a user is not satisfied with the statistics that are provided by the 

Statistics extension. Thus, he can implement a user-specific custom extension, which 

provides the required functionality. In order to allow the user to access his individual 

statistics from any computer, the new extension is installed on the server. As the 

Figure 4.2: User interface of the time recorder web application 
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extension is a user-specific extension, only the user who installed the extension should 

have access to it and thus it is executed in an individual user scope. 

Figure 4.3 shows the user-specific composition for the user Markus, who installed the 

server-side extension CustomStatistics. The figure comprises the base composition 

(shown in Figure 4.1) extended by the new extension. The dashed border indicates the 

user scope to which the newly added extension is applied. 

 

 

Server-side extensions are installed and executed on the server. Thus, they are 

available all the time, regardless from which computer the user accesses the web 

application. Because server-side extensions are executed on the same server as all other 

extensions of the time recorder, there is no performance penalty caused by remote 

communication. However, extensions in different user scopes are executed in separate 

memory areas (i.e., in different AppDomains [Microsoft, 2013b]) and thus 

communication between them causes some performance overhead. As server-side 

extensions increase the work load on the server and as they may execute malicious 

code, users typically need to be authorized to install extensions on the server. 

4.2 Client-side Extensions 

Now we assume that the user Markus is an engineer in the field. He needs to track his 

working hours using a portable device. Because the device cannot connect to the 

internet, he periodically has to synchronize it with the time recorder application. To 

synchronize time records, the user connects his device to his office computer, where 

the client-side extension MobileSync has been installed. Because this extension is 

executed on the client computer, it can access the portable device there. 

Figure 4.4 shows the composition for the user Markus. To synchronize the data between 

the device and the time recorder web application, the Data Store extension is plugged 

to the MobileSync extension. 

Figure 4.3: Extending a web application with a user-specific server-side extension 
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Client-side extensions are installed on the client and are remotely plugged into the web 

application. To plug remotely means that the host and the contributor are executed on 

different computers. Plux creates proxies on both sides on‑the‑fly. These proxies 

handle the communication between the host and the contributor transparently. Note, 

that Plux allows any extension to run remotely without extra coding effort. 

Client-side extensions allow users to build components that integrate local hardware or 

software into the web application. Furthermore, since client-side extensions are 

installed on client computers, they enable users to extend their web applications 

without being authorized to install extensions on the server. However, client-side 

extensions are executed remotely and cause additional communication overhead. 

The above scenario described how a client-side extension enabled a single user to 

connect his local hardware to a web application. The next scenario now describes a 

situation, where a group of users need to have access to hardware, which is not located 

near the web server.  

Users, which are in the group Worker, do not have the permission to use the web 

interface for recording their working hours. Instead they must use a hardware time 

clock to track their working hours. The time clock is connected to a computer on which 

a client-side extension is installed that integrates the time clock into the time recorder 

application. Please note, that in this scenario the client-side extension is installed on a 

different computer than the one that is used to access the web application via the web 

browser (e.g., to check statistics).  

Figure 4.5 on the next page shows the composition for members of the group Worker. 

As these users should only be able to record working hours via the hardware time 

clock, the server-side extension RecorderControl is removed for this group, while the 

client-side extension HardwareRecorder is installed instead. Thus, if a user of this group 

uses the time recorder from any computer, he will see the user interface of the 

HardwareRecorder (see Figure 4.6), which displays the current status of the Recorder, but 

Figure 4.4: Extending a web application with a user-specific client-side extension 
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does not allow the user to modify its state. To ensure that the HardwareRecorder 

extension is available for all users in the group at any time, the computer on which the 

extension is installed is permanently connected to the web server. As this computer 

acts as a server for the time recorder, the environment in which the hardware time 

clock is located is called Time Clock Server. 

 

 

Another possible reason for using client-side extensions with group scope instead of a 

server-side extension is authorization. Even if one is not authorized to install an ex-

tension on the server, one can make it available to multiple users as a client-side 

extension with group scope. 

4.3 Sandbox Extensions 

In the next scenario, the developers of the time recorder want to provide a richer user 

interface, e.g., one that is built with Silverlight [Microsoft, 2011b] instead of HTML. 

Silverlight code runs in a sandbox within the web browser of the client. Therefore, the 

best way to integrate such code into a Plux application is to implement Silverlight 

Figure 4.6: User interface of HardwareRecorder extension that is 

executed on a remote computer 

Figure 4.5: Extending a web application with a client-side extension 

for multiple users 
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components as extensions that reside on the server but are downloaded to the web 

browser on demand to be executed there. 

In order to implement this scenario, we remove the user interface extensions 

RecorderControl and StatisticsControl, implement new UI extensions in Silverlight and 

install them on the server. There, they are discovered as sandbox extensions. When a 

user starts the time recorder, the sandbox extensions are downloaded from the server 

to the client computer and are executed there in the sandboxed Silverlight 

environment. The business logic extensions remain on the server and are remotely 

plugged into the Silverlight extensions on the client (see Figure 4.7). 

 

The advantage of sandbox extensions is that they are installed on the server-side, but 

executed on the client. Thus, they are available for each client, but do not increase the 

work load on the server. The disadvantage is that the user has to install the Silverlight 

runtime environment on its computer, which is not installed by default on most 

operating systems. Furthermore, as such extensions are plugged remotely, they cause 

additional communication overhead. 

4.4 Concluding Example 

Finally, Figure 4.8 shows the composition state of a concluding example, which 

combines all types of extension integration: server-side, client-side, and sandbox 

extensions. We assume that user Markus needs his custom statistics, he tracks working 

hours with a portable device, he is member of the group Worker, so he uses the 

hardware time clock for recording working hours in the office, and the time recorder 

application provides a rich user interface that is implemented with sandbox extensions. 

Figure 4.7: Extending a web application with sandbox extensions that are installed on the 

server, transferred to the client on demand, and executed there in a sandbox 
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The composition is distributed across three different computers: the Web Server, the 

Time Clock Server, and the Client computer. Even though extensions are executed 

remotely on different computers, they are implemented in the same way as extensions 

that are plugged locally. Developers just declare the extensions' requirements and 

provisions using metadata (see 3.1 Metadata Standard), and Plux automatically 

composes them to a coherent web application. Furthermore, Plux handles the 

communication between the host and the contributor transparently so that developers 

need not have to care about the distribution of extensions. In other words, a server-side 

extension of one web application can be reused as a client-side extension in some other 

web application, and vice versa. There is one exception, though: since the current 

version of Plux is implemented in .NET, it uses the Silverlight technology for sandbox 

extensions. Unfortunately, Silverlight assemblies are not binary compatible to .NET 

assemblies and thus, sandbox extensions need to be compiled in a special way and 

cannot be reused as server-side or client-side extensions. 

This section showed scenarios for the integration of server-side, client-side, and 

sandbox extensions into a coherent web application. The next section explains the 

extended component model for the web, which enriches the base component model to 

support plugin-based distributed multi-user web applications. 

Figure 4.8: User-specific composition composed by server-

side, client-side and sandbox extensions 
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5 The Extended Plux Component Model for 

the Web          

This chapter describes the extended Plux component model for the web. The 

extended deployment standard specifies user-specific repositories as well as a 

hierarchical discovery mechanism for local and for distributed plugins. The 

extended composition standard specifies an individual composition state per 

user and a distribution mechanism that makes the distribution of plugins 

transparent to developers and to users. The extended interaction standard 

specifies the communication between distributed extensions, including 

distributed thread management, object data synchronization, and lifetime 

management for distributed objects. As web support, multi-user support, and 

distribution support is provided by the component model implementation, but 

not by the developer, the metadata standard and the customization standard 

remain the same as in the base component model. 

The extended Plux component model for the web provides a set of specifications, 

which enables Plux to build plugin-based distributed multi-user web applications, as 

described in several usage scenarios in Chapter 4. The specifications of the extended 

component model add to the specifications of the base component model described in 

Chapter 3. Thus, everything that is specified in Chapter 3 still is valid in the extended 

component model for the web. 

Plux for the web combines the advantages of the component approach, the distribution 

approach, and the web approach into a single coherent component model. It 

aggregates the capabilities of these technologies to provide a more powerful 

technology than developers would get, if they would combine these technologies 

independently. The Plux component model for the web distinguishes itself from others 

by the following characteristics: 

Extensible web applications. Existing component technologies, such as CORBA, COM+, 

Eclipse, OSGi, or MEF, do not target extensible web applications and thus they are not 

supported. Although the Remote Application Platform (RAP) provides web support 

for Eclipse, and in spite of the fact that other component technologies can be combined 

with web application frameworks such as Java EE or ASP.NET to build component-

The Extended Plux Component 

Model for the Web 
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based web applications, in both cases the composition of a web application cannot be 

customized individually per user. Plux maintains an individual composition state per 

user and thus enables users to extend and to reconfigure their web applications for 

their specific needs. 

Distribution and deployment. Many current component technologies and web application 

frameworks provide support for component distribution. However, Plux stands out in 

the way it deploys, composes, and interacts with distributed components. In other 

technologies, deploying components requires developers or administrators to register 

components in a registry, e.g., the windows registry for COM+, the RMI registry for 

Java RMI, or a UDDI registry for web services. Moreover, in technologies such as 

remoting, web services, or OSGi Remote Services, the developer needs to implement 

particular access points in order to export a service to a distributed computer. In Plux, 

the implementation of extensions remains the same, regardless of if they are plugged 

locally on the same computer or remotely on other computers. Deploying extensions in 

Plux just requires copying the respective plugins into a specific directory, while the 

discovery mechanism integrates their extensions automatically into the application and 

makes them available to other local and remote extensions without any extra 

programming or configuration effort. 

Automatic composition. In web application frameworks, the composition has to be done 

programmatically, and in most component systems the composition is done by 

configuration. In Plux, the composition is done automatically by the composer, which 

uses the extensions' self-contained metadata to retrieve requirements and provisions 

and to connect matching extensions automatically, even if they are distributed over 

multiple computers. For this, the extended composition standard specifies an 

automatic distributed composition process. 

Automatic lifetime management. Current component technologies, which support 

distributed components (e.g., CORBA, COM+, or OSGi), as well as technologies for 

distributed computing (e.g., remoting or web services) do not track which components 

are connected to each other. Thus, lifetime management usually resorts to one of the 

following solutions: (1) either the application creates a new instance for an exported 

service on every request and destroys it immediately afterwards, or (2) the application 

provides a single instance (or a pool of instances) for an exported service, which is 

created at startup time and exists as long as the service is available, or (3) the lifetime of 

an exported service depends on a specified lease time, or (4) the exported service 

supports distributed reference counting. The first three solutions provide automatic 

lifetime management, i.e., the consumer of a service does not have to do additional 

programming for lifetime management. However, if a service is created and destroyed 

on every single request, it cannot preserve a state during sequential requests, i.e., such 

a service is stateless. If a service is implemented by using just a single instance, it is 

shared among all consumers and thus does not have a user-specific state. However, if a 

service needs to be stateful, this requires an individual instance for every consumer. 

Thus, the lifetime management of a service either depends on a lease time, which may 
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expire too soon, or the programmer needs to take care of the lifetime management 

using reference counting. In Plux, the composition state maintains the instances of 

extensions and their connections and thus reflects which extensions are in use and 

which are not. This allows Plux to provide a distributed garbage collection mechanism 

that destroys unused distributed extensions without the need for lease times or 

reference counting. 

Implementation transparency. Other technologies only provide location transparency or 

access transparency for component distribution. If location transparency is provided, 

developers need not know where a remote service is located, but method calls to it are 

implemented differently than to local objects. If access transparency is provided, 

location transparency is provided too, but method calls to remote services are 

implemented in the same way as to local objects. Usually access transparency is 

provided via proxy objects. However, developers must be aware that consecutive calls 

may be executed in different threads on the remote side, or that serialized objects may 

are duplicated multiple times, or that modifications to serialized objects do not get 

synchronized with the original object. The Plux component model provides 

implementation transparency for distributed extensions, which implies access 

transparency and location transparency. To support implementation transparency, 

Plux offers the following mechanisms: it provides distributed thread management, which 

simulates a single coherent thread that is assembled from multiple distributed threads 

that are linked together. It provides reference identity, which ensures that if an object is 

transferred to a remote environment multiple times, the remote environment gets the 

same reference to the remote object each time. Vice versa, if the remote object is 

transferred back to the original environment, the original environment gets a reference 

to the original object. Finally, it provides object data synchronization, which ensures that 

if a serialized object is modified in a remote environment, the original object in the 

original environment is updated too. Due to the support of implementation 

transparency, remotely plugged extensions can be implemented in exactly the same 

way as locally plugged extensions. 

5.1 Metadata Standard 

Extensions for distributed multi-user web applications are implemented in the same 

way as extensions for single-user desktop applications. Therefore, Plux extensions can 

be reused in single-user desktop applications as well as in distributed multi-user web 

applications, regardless of if they are installed as server-side or as client-side 

extensions. The distribution of extensions is transparent to the developer. Developers 

just declare extensions by attaching the Extension attribute to classes and define the 

extensions' requirements and provisions using the Slot and the Plug attributes 

respectively, which was described in Section 3.1. The metadata standard of the 

extended component model for the web does not add any further specifications for 

extension declaration. 
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5.2 Deployment Standard 

Extensions are deployed in plugins, and slot definitions are deployed in contracts. 

Plugins and contracts are DLL assembly files, which are copied into discovery 

directories and are discovered by an exchangeable discoverer mechanism (see 

Section 3.2). In contrast to single-user desktop applications, in multi-user web 

applications each discovered plugin and contract needs to be assigned to a specific 

user. For this, the web discovery mechanism supports user-specific and user group-

specific plugin repositories. Furthermore, since these repositories can either reside on 

the web server or on a remote computer, such as the user's client-side computer, the 

discovery mechanism supports discovering distributed plugins and contracts. 

5.2.1 User-specific Repositories 

Users can extend their web applications with user-specific extensions, i.e., users can 

install their individual set of server-side, client-side, and sandbox plugins. For this, a 

server-side discoverer monitors user-specific plugin directories on the web server and 

a client-side discoverer monitors a plugin directory for the user on the client-side. 

Figure 5.1 shows an example with a server-side repository for two users named Markus 

and Julia and an additional client-side repository for each user. Each user has its 

individual instance of a server-side Discoverer extension and an individual instance of a 

client-side Discoverer extension. The server-side Discoverer matches usernames with the 

directory names in the repository to assign directories to users. Within a user directory, 

Figure 5.1: Discovery of user-specific server-side, client-side, and sanbox plugins 
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server-side plugins and sandbox plugins are separated via subdirectories. Server-side 

plugins are copied into the Server directory, while sandbox plugins, which are executed 

on the client-side, are copied into the Client directory. User-specific contracts are 

installed in the same way as user-specific plugins. Plugins and contracts can optionally 

be separated in further subdirectories. The Discoverer monitors the directories for a 

specific user and notifies the Plux core when new plugins or contracts are added or 

when they are removed. 

Client-side plugins are discovered with the client-side Discoverer extension, which is 

plugged remotely to the Plux core when the client connects to the server (see 

Section 5.4.2 Connection Establishment). The client-side discoverer matches the name 

of the web application with the directory names of the client-side repository, monitors 

the directory that belongs to the application, and notifies the Plux core when new 

plugins or contracts are copied into the application directory or when they are 

removed from there. In Figure 5.1 the name of the application is set to Time Recorder. 

Thus, each client-side discoverer that is connected to this application monitors the Time 

Recorder directory in the client-side repository. 

The Discoverer extensions in Figure 5.1 are simplified. In the real implementation, each 

of them has a slot for detector extensions as well as a slot for analyzer extensions, as it 

was described in Section 3.2. 

The directory layout, which is described above, is the default directory layout for 

discoverer extensions. However, the discoverers can be customized, in order to assign 

any directory to a user on the server-side, or to assign any directory to an application 

on the client-side. Also the separation between server-side plugins and sandbox 

plugins need not be done with subdirectories of a user directory, but can also be done 

on a different directory level, e.g., on the outermost level of the plugin repository. As 

the discovery mechanism is implemented with extensions, it can also be replaced with 

other discoverer implementations, e.g., with a discoverer that retrieves discovery 

information from a database.  

5.2.2 Hierarchical Discovery 

Although every user can install his individual set of plugin, the plugins for the base 

application are usually the same for all users. As it would be inefficient to add all base 

plugins to all user directories in the repository and because it would be challenging to 

keep the base plugins for all users consistent on every version update, Plux supports 

plugin directories that are shared among user groups. User groups are organized with a 

user store. Each user group can have members, which can be users or again user 

groups. Actually, the user store does not distinguish between users and user groups. 

Therefore, also users can have subordinate members and thus maintain different sets of 

plugins for a single web application. Vice versa, each user and user group can belong 

to multiple user groups at the same time. 
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Figure 5.2 shows an example of a server-side plugin repository with various directories 

for users and user groups. As user groups (and users) can have multiple members and 

since members can belong to multiple user groups at the same time, directories for user 

groups and for users are organized in a flat way in the plugin repository. The user 

store defines the hierarchy of users and user groups. To keep the example simple, in 

Figure 5.2 each user directory only contains server-side plugins, but does not 

distinguish between server-side and sandbox plugins. 

The user store defines a user group Base, to which all users and user groups belong. 

Base has two subgroups named Worker and Anonymous. The users Markus and Julia 

belong to the group Worker and all anonymous users automatically belong to the group 

Anonymous. 

Plugins are installed for a user or for a user group by copying them into the right 

directory. To uninstall them, they are removed from the directory. However, in some 

situations a plugin that is installed for a certain user group must be made unaccessible 

for a subgroup of this user group. In such a case, the plugin cannot just be removed 

from the directory, because this would affect also other users. Thus, besides the plugin 

repository the discoverer optionally can use a configuration file to adjust the set of 

detected plugins for a user. With the configuration file, administrators can include or 

exclude plugins for users or user groups. In the example of Figure 5.2, the plugin 

TimeRedorder.dll is excluded for anonymous users and the plugin DataStore.dll is 

excluded for users in the group Worker. 

Figure 5.2: Discovery of user-specific and user group-specific plugins 

using a user store and a configuration file 
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5.3 Composition Standard 

The composition standard specifies how the composer connects extensions and how 

the composition of an application is maintained by the composition state. Section 3.3 

described how the composition state can be used by hosts to retrieve their contributors, 

which composition operations are used to compose an application, which composition 

events are raised during the composition process, and how the composer supports 

automatic composition, programmatic composition, behavior-guided composition, and 

user-guided composition. 

In the extended component model for the web, the composer uses the same 

composition operations, raises the same composition events and performs the same 

composition process as specified in the base component model. However, the extended 

composition standard additionally specifies an individual composition state per user, 

which maintains user-specific extensions in separate user scopes. Furthermore, it 

specifies a distributed composition process, which is used for automatic composition, 

programmatic composition, and behavior-guided composition. To provide developers 

with transparent extension distribution, remote extensions can be accessed in the same 

way as local extensions via a distributed composition state. 

5.3.1 Composition State 

The composition state stores instances of extensions and their connections. As users are 

able to plug their user-specific extensions, the composition states of different users 

vary from each other and need to be maintained individually per user, which is 

described in the subsection Multi-user Composition State. 

Extensions can be distributed over multiple computers. Thus, the composition state 

needs to be accessible for remote extensions in the same way as it is for local 

extensions. How the composition state is distributed over multiple computers is 

described in the subsection Distributed Composition State. 

Multi-user Composition State 

Plux maintains an individual composition state per user, i.e., every user has its own 

instances of extensions and its own connections between extensions. This enables users 

to plug their user-specific extensions, and to unplug extensions without affecting other 

users. However, providing a multi-user composition state is not just about storing 

individual instances of extensions and their connections, but also about considering the 

following issues: 

 User-specific (and group-specific) extensions must only be accessible by those users, 

who are supposed to access them. Users must not be able to access user-specific 

extensions from other users, neither via the Plux infrastructure, nor via any 
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tricks, such as by instantiating them manually with their constructors or by the 

use of reflection. 

 User-specific extensions must not lead to conflicts. If different users install different 

extensions with equal type names (and equal namespaces), Plux needs to 

distinguish between them and connect the right extensions for every user. 

 User-specific extensions must not cause errors that affect others. Enabling user-

specific extensions increases the risk of executing untested or buggy code. 

Nevertheless, in the event of a crash that is caused by a user-specific extension, 

Plux must ensure that other users are not affected. 

In order to provide a solution for these issues, the multi-user composition state 

allocates separate memory areas for user-specific and for group-specific extensions. As 

the current implementation of the component model is realized with .NET, the runtime 

infrastructure uses AppDomains [Microsoft, 2013b] to load extensions into different 

memory areas. Each user-specific (and group-specific) extension is instantiated within 

a user-specific (or group-specific) AppDomain, i.e., extensions that are installed for the 

same user (or the same user group) are executed in the same AppDomain, whereas 

other extensions are executed in different AppDomains. 

Figure 5.3 shows an example with two user-specific composition states of the time 

recorder application for the users Markus and Julia. Both are members of the user group 

Worker. Worker is a subgroup of the user group Base (see Figure 5.2 on page 102). 

Extensions that constitute the base application are installed for all users that are 

members of the user group Base and thus are instantiated in the AppDomain that is 

called Base. Users in the group Worker get the group-specific extension LimitedDataStore 

as their data source, which is instantiated in the AppDomain Worker. The user Markus 

has not plugged the Statistics extension of the base application, but instead uses its 

user-specific extension CustomStatistics, which is instantiated in the AppDomain for all 

user-specific extensions of Markus. Similar, Julia's user-specific extensions NotesControl 

and Notes are instantiated in the user-specific AppDomain for Julia. As a result, the 

composition state for a single user is divided into multiple AppDomains, e.g., for the 

user Markus it is divided into the AppDomains Base, Worker, and Markus. 

As extensions for different users are loaded into different AppDomains, the type 

information of extensions is only available for entitled users. Thus, others cannot 

instantiate them, neither via constructor calls, nor via reflection. Type conflicts between 

user-specific plugins of different users cannot happen too, because user-specific types 

are loaded into different AppDomains. Finally, due to user-specific AppDomains, 

errors that are caused by user-specific extensions do not lead to crashes that affect 

others; even if extensions crash so badly that the hosting AppDomain crashes, too. 

Despite the fact that extensions are instantiated in different AppDomains, multiple 

instances of the same extension always are created in the same AppDomain, even if 
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they are created for different users. For example in Figure 5.3 the extension 

LimitedDataStore is instantiated multiple times, one instance for each user that is a 

member of the user group Worker. However, as all instances of the same extension are 

executed in the same AppDomain, developers still can implement extensions that share 

data and common resources between different users within the AppDomain. 

Unfortunately, if extensions are instantiated in different AppDomains, they cause 

additional communication overhead, when they call methods across AppDomain 

boundaries. However, extensions only are divided into separate AppDomains, if user-

specific (or group-specific) extensions are plugged to an application, i.e., for a 

composition without any user-specific extension, there is only one AppDomain and 

thus there is no extra communication overhead. Even if user-specific extensions are 

plugged to an application, there is no communication overhead between the extensions 

of the base application. Only method calls from base extensions to user-specific 

extensions are affected by the overhead. Also, since extensions that are installed for the 

Figure 5.3: Individual composition states per user with extensions that are 

executed in user-specific and group-specific memory areas 
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same user group are loaded into the same AppDomain, there is only communication 

overhead between extensions that are installed for different user groups. 

As each plugin is assigned to a certain user (or user group), each plugin is only loaded 

once, namely in the AppDomain for this user (or user group). However, contracts are 

handled differently than plugins. As contracts contain slot definitions, which specify 

the interfaces of slots, the type information of a contract is required by both, the hosts, 

which use the interface to access their plugged contributors, and the contributors, 

which implement the interface of a slot definition. In order to enable a host of the base 

application to open a slot, the contract with the slot definition for this slot must be 

installed for the base application. However, such a contract is not only loaded in the 

Base AppDomain, for which it is installed, but also in all AppDomains that contain a 

contributor with a plug for a slot that is defined in this contract. For example, in 

Figure 5.3, the contract with the slot definition DataStore is installed for the user group 

Base, but loaded in all AppDomains, because the extensions Recorder and Statistics open 

this slot in the Base AppDomain, the user-specific extensions for Markus and for Julia 

open this slot in their user-specific AppDomains, and the extension LimitedDataStore 

for the user group Worker provides a plug for this slot. The contract that contains the 

Statistics slot definition also needs to be installed for the base application. However, as 

only the user-specific extension CustomStatistics uses this slot (besides the base 

extensions), only the AppDomains Base and Markus load this contract. 

As user group contracts are also loaded into the AppDomains of user group members, 

their type information is accessible by user-specific plugins of those members. As a 

result, user-specific plugins can use the implementation of contracts installed for 

higher-level user groups. Thus, contracts should only contain interface descriptions, 

but not sensitive library implementations. Type conflicts can never occur between the 

contracts of different users. However, they can occur between contracts of a user and 

contracts of a higher-level user group. In that case, only the slots and plugs can be used 

that reference the contract that was loaded first. For slots and plugs that cannot be used 

because of a type conflict, the logger writes a message to the log output. Similar to type 

conflicts, as user-specific contracts are not loaded in higher-level group-specific 

AppDomains, they cannot lead to errors that affect other users. However, higher-level 

group-specific contracts can lead to errors in AppDomains for all members in the user 

group. Thus, the permission to install group-specific contracts should be granted only 

to trusted people. This decreases the risk of installing error-prone contracts, as well as 

the risk of installing contracts that provide sensitive implementations to members of a 

user group that should not have access to them. 

To increase performance on the server, the communication overhead between 

AppDomains can be avoided by disabling the separation of user-specific plugins into 

different AppDomains. This may is reasonable if all server-side plugins are maintained 

by a single administrator. Even if all plugins are executed in the same AppDomain, 

users can still have their individual sets of plugins as well as their individual 
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composition states. And even if only the administrator is allowed to install plugins on 

the web server, users can still plug their individual client-side plugins by themselves. 

Distributed Composition State 

The distributed composition state enables hosts to access remotely plugged 

contributors in the same way as they access locally plugged contributors. Furthermore, 

the composer uses the distributed composition state for the distributed composition 

process (see Section 5.3.2) that plugs contributors form remote computers to local 

hosts, and vice versa. 

Figure 5.4 shows an example of how a host accesses a remotely plugged contributor by 

using the composition state. In (1) the extension object of the TimeRecorder uses its 

meta-object to retrieve the meta-object of the plugged contributor MobileSync (2). Via 

the retrieved meta-object the host gets a reference to the contributor's extension object 

(3) and finally can call the contributor's methods (4). 

 

However, the distributed composition state in Figure 5.4 cannot be implemented as it is 

shown, because the extensions TimeRecorder and MobileSync are instantiated on 

different computers and the Control slot of the of the TimeRecorder cannot have a direct 

reference to the Control plug of the MobileSync extension. Thus, Figure 5.4 just shows a 

logical view of the composition state as it appears to users and to developers. 

Figure 5.5 on the next page shows how the actual distributed composition state is 

implemented. On the server-side, the TimeRecorder references a copy of the client-side 

MobileSync extension, while the client-side MobileSync extension is plugged into a copy 

of the server-side TimeRecorder extension. Both meta-object copies reference a proxy 

object instead of the original extension object. Thus, the whole composition state is 

available both on the server and on the client. 

When the server-side TimeRecorder wants to use the client-side MobileSync contributor, 

it first retrieves the TimeRecorder meta-object (1), then the plugged copy of the 

MobileSync meta-object (2) to get a reference to the MobileSync proxy object (3). When 

the TimeRecorder calls a method on the MobileSync proxy object (4), the proxy uses the 

Plux Runtime Coordinator, which is part of the composition infrastructure and handles 

Figure 5.4: Logical view of the distributed composition state with meta-objects and 

extension objects 
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the communication between distributed extensions, to forward the call to the remote 

coordinator (6), and finally to call the method on the original extension object of the 

client-side MobileSync contributor (7). The result is sent back in exactly the same way. 

5.3.2 Composition Process 

The composition process defines how extensions are composed to a coherent 

application. Section 3.3 described how Plux performs automatic composition, i.e., how 

the composer retrieves the extensions' requirements and provisions from their 

metadata and automatically connects matching extensions. Furthermore, it described 

programmatic composition, behavior-guided composition, and user-guided compo-

sition. The composition process for component-based web applications is the same as 

described for the base component model. However, for distributed multi-user web 

applications this composition process needs to be performed for multiple users as well 

as for distributed extensions. 

For distributed web applications Plux needs to compose extensions, which are located 

on different computers. For this, the distributed composition process uses distributed 

composer instances that are synchronized with a token passing scheme. 

Multi-user Composition Process 

Plux needs to compose a multi-user web application individually for each user. In 

order to avoid interference between these composition processes, the composition 

infrastructure instantiates individual composer instances that perform the multi-user 

composition in parallel using a dedicated runtime thread per user (see Section 5.4.1 

Thread Management). 

Figure 5.5: Implementation of the distributed composition state 

with meta-object copies and proxy objects 
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Distributed Composition Process 

The composition standard for the web specifies that extensions can be installed and 

executed on different computers. Thus, the composition process needs to be 

distributed, too, in order to instantiate extensions on different computers and connect 

them to a single coherent web application. 

As described in the base component model, the composition process is divided into 

composition sequences, each of them performing a number of composition operations 

for a specific extension to make it ready for use, i.e., they activate the extension and fill 

its slots with contributors (see Section 3.3). The same happens in the distributed 

composition process. However, the composition sequences are executed by a 

distributed composer that comprises multiple synchronized composer instances, which 

are located on different computers. 

Plux uses a token passing scheme to coordinate the distributed instances of the 

composer. The token is passed from one computer to another and indicates the active 

environment with the composer instance that is allowed to perform the next 

composition operation. As soon as an operation needs to be executed on a different 

computer, the token is passed on. The token also coordinates the distributed runtime 

thread (see Section 5.4.1), which simulates a single coherent thread that is distributed 

across all connected environments. Only the environment that currently has the token 

is enabled to execute code in the runtime thread, while all other environments are 

blocking this thread. As the composition state can only be retrieved from within the 

runtime thread (see Section 3.4.1), the distributed composition state (see Section 5.3.1) 

only needs to be kept up to date in the environment that currently has the token. As a 

result, the composition state is not updated after each performed composition 

operation in all remote environments, but only when the token is passed to them. The 

environment with the token always has full knowledge about the current composition 

state and about all available extensions. Thus, the distributed composer does not 

communicate with remote environments during the composition process until it 

forwards the token to the next environment to perform a composition sequence for an 

extension there or to execute a remote event handler for a raised composition event. 

Figure 5.6 on the next page shows how the distributed composition process composes 

the server-side TimeRecorder and remotely plugs the client-side MobileSync contributor 

to the server-side host. In (a) the figure shows the composition state, before the 

TimeRecorder host is activated. The server-side environment currently has the token 

and thus is active. The active environment is indicated with a solid border and a 

header above; the runtime thread on the client-side environment is currently blocked, 

which is indicated with a dotted border and a header caption. As soon as a 

composition sequence for the TimeRecorder is triggered, the server-side composer 

instance activates the extension and fills its slot. In (b) the composition sequence is 

finished, i.e., the TimeRecorder's extension object is instantiated and a copy of the meta-

object of the client-side MobileSync extension is plugged to the TimeRecorder. For this, it  
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Figure 5.6: Composing distributed extensions using token passing 
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was not necessary to pass the token to the client-side. Therefore, the composition state 

on the client-side was not updated yet and still is empty. 

When the TimeRecorder retrieves the MobileSync's extension object, the composition 

sequence for MobileSync is triggered (see Host-triggered Composition Sequences in 

Section 3.3.4). As MobilSync is a client-side extension, the composition sequence for this 

extension needs to be performed there. Therefore the composer passes the token to the 

client-side environment (c). 

Every time when the token is passed from one environment to another, the 

composition state is updated on the target environment that receives the token. Thus, 

the composition state is transferred from the server-side to the client-side, whereat the 

TimeRecorder's extension object is replaced by a proxy object there. In (d) the 

composition process continues with performing the composition sequence for 

MobileSync. The composition sequence instantiates the MoblieSync's extension object 

and fills the TimeRecorder's slot. When the composition sequence is finished, the token 

is passed back to the server-side environment (e). There, the server-side composition 

state is updated with the activated MobileSync contributor, which now references a 

proxy object. Finally the MobileSync proxy object is returned to the TimeRecorder, which 

was requested in (b). 

Although the distributed composition process is performed on distributed computers, 

logically it is the same as the local composition process. Thus, all other specified 

composition concepts, such as composition events, programmatic composition, or 

behavior-guided composition, can be used in distributed composition in the same way 

as in local composition. 

5.4 Interaction Standard 

The interaction standard specifies how extensions communicate with each other and 

how they exchange data. Plux web applications are used by multiple users at the same 

time, they are executed in sequential round trips using the request-response method, 

and they can be distributed across multiple computers. Thus, the interaction standard 

for the web is extended by additional specifications for thread management and by 

specifications for communication to provide transparent distribution support. These 

specifications enable developers to implement distributed extensions in the same way 

as local extensions without considering threading or communication issues. 

To describe the following specifications, this section uses several sequence diagrams. 

As these sequence diagrams contain additional elements, which are not specified in the 

Unified Modeling Language (UML) [OMG, 2011], Figure 5.7 on the next page explains the 

elements that are used in the sequence diagrams below. A sequence diagram shows an 

interaction between objects. Every object is represented by a vertical line, which is 

called lifeline. The header of the lifeline denotes the name of the object's class. As 

objects can be instantiated in different environments, sequence diagrams may contain 
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multiple environments, which are separated by Environment separators that are 

represented with a dashed bold line. Each environment has an Environment name and a 

unique Environment identifier. 

Objects communicate with each other using messages. Synchronous messages are 

processed in the same thread as the one in which they were sent. They are represented 

by a solid line with a filled arrowhead. Asynchronous messages are processed in a 

different thread as the one in which they were sent. They are represented by solid line 

with an open arrowhead. Each message optionally can have Message arguments, which 

are listed in parentheses after the message name. Return messages notify the sender of a 

Synchronous message about the end of its execution and optionally pass a Result to 

sender. Return messages are represented by a dashed line with an open arrowhead. 

To describe multithreaded processes within a single sequence diagram, threads are 

marked by Thread identifiers that are assigned to each Execution specification. Execution 

specifications represent the execution of a message. Every thread identifier consists of 

two parts that are separated by a dot. The first part is the identifier of the environment 

in which the thread was started (i.e., the Environment identifier). The second part is a 

consecutive number that is incremented for every new thread. The Environment 

identifier is prepended in thread identifiers in order to allow every environment to 

create new thread identifiers without synchronizing the consecutive number with 

other environments. As the runtime thread is always the first thread in the 

environment 1, it has the thread identifier 1.0. In some sequence diagrams the 

consecutive number of a thread identifier is replaced by a letter, which represents a 

variable and indicates a random thread, e.g., a thread from a thread pool. 

In order to keep sequence diagrams simple, they do not describe alternative traces with 

combined fragments. However, to indicate a choice of behavior at a certain point, 

messages can be prefixed with a Message condition. Message conditions are expressions 

within brackets that have to evaluate to true in order to start the interaction. The 

sequence diagrams below only show traces in which the expression is always true, 

Figure 5.7: Elements of a sequence diagram 
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other traces are shown in separate sequence diagrams in the appendix of the thesis. 

Finally, State invariants indicate a certain state in the process and are represented by a 

solid oval box containing a description of the current state. 

5.4.1 Thread Management 

To avoid complicated thread synchronization implementations in every extension, the 

interaction standard specifies a dedicated runtime thread, which is the only thread that 

is allowed to execute runtime operations, such as retrieving the composition state or 

performing composition operations. Furthermore, extensions are only allowed to call 

methods from other extensions in the runtime thread so that extensions do not have to 

check whether they were called in the runtime thread, when they want to perform 

operations on the composition state. 

Since web applications are used by multiple users concurrently and since different 

users should not interfere with each other, the interaction standard for the web 

specifies a separate runtime thread per user. However, assigning a separate thread to 

every user would be inefficient, because web applications are not running 

continuously, but are rather executed in sequential round trips. A user interaction with 

a web browser triggers a web request, which is sent to the web server. The web 

application on the web server processes the request, and finally a response is sent back 

to the browser. After such a round trip the web application is idle, until the next round 

trip is triggered. If every user would have his own thread, this thread would have to 

wait for the next request of the same user after every round trip. If threads are shared 

among different users, they do not have to wait for a certain user, but can process 

requests from other users in the meantime. Therefore the interaction standard for the 

web specifies a multi-user runtime thread that is only assigned to a specific user during 

a round trip, but is released afterwards to reuse it as runtime thread for another user. 

Even though extensions can be distributed to different computers, operations on the 

composition state still need to be executed in a single runtime thread. However, since 

distributed applications are executed on different computers, they cannot be executed 

within the same thread. Therefore the interaction standard specifies a distributed 

runtime thread, which simulates a single coherent thread that comprises multiple 

threads, which are located on connected environments and which are coordinated with 

a token passing scheme. 

Multi-user Runtime Thread 

Web applications are executed in sequential round trips, where each round trip is 

processed in a different thread that is taken from a common thread pool. As a result, 

sequential round trips for a certain user are processed in different threads. 

Nevertheless, the interaction standard specifies only a single runtime thread. In order 

to reuse threads for different users and to restrict composition operations to the 
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runtime thread, the runtime thread is taken from a thread pool and needs to be 

switched for consecutive round trips. 

Plux provides a dispatcher, which is used to invoke method calls from any thread in 

the runtime thread. The dispatcher can be acquired by any thread, but only by one at a 

time. Acquiring the dispatcher makes the current thread the runtime thread. After 

finishing a round trip, the dispatcher is released so that other threads can become the 

runtime thread. 

Figure 5.8 shows a sequence diagram that describes how a thread acquires the 

dispatcher in order to become the runtime thread for processing a web request. The 

sequence diagram uses state invariants to indicate whether the dispatcher currently is 

Acquired or Released. As web applications can also be distributed, the runtime thread 

can be distributed as well. The distributed runtime thread is coordinated with a token 

that enables only one environment at a time to execute code in the runtime thread (see 

Distributed Runtime Thread below). Although the web application in Figure 5.8 is not 

distributed, the sequence diagram marks the positions with a Token state invariant 

where the token is required for executing code in the runtime thread. 

In (1) the Plux core receives a web request in an arbitrary thread 1.x via its Process 

method. To make the executing thread the runtime thread, the method acquires the 

dispatcher (2). After the dispatcher is acquired (3), the runtime thread id, which is 

always 1.0, now is assigned to the current thread. Next, the dispatcher raises an 

Acquired event, which is handled by the coordinator. The coordinator is responsible for 

thread management and remote communication. It ensures that it has the token (4) 

before the Acquire method returns to its caller. In other words, the coordinator blocks 

the runtime thread of the current environment until it gets the token. If the token 

would be missing in (4), the coordinator would request it from the connected 

environments and would receive it, as soon as the dispatcher in the environment that 

holds the token becomes idle. 

Even though the core's Process method now is already executing in the runtime thread, 

for error handling reasons, the core ensures that every code that is executed in the 

runtime thread is initiated from a dispatcher operation. Thus, after the dispatcher is 

acquired, the core calls the dispatcher's BeginInvoke method (5) to asynchronously 

enqueue a dispatcher operation for the web application's Process method to the 

operation queue of the dispatcher. Each time, when an operation is enqueued, the 

coordinator handles the dispatcher's OpEnqueued event (6). OpEnqueued checks whether 

the current environment has the token. In Figure 5.8 this cannot happen, because the 

token was already retrieved in (4), and can only be passed to other environments in the 

runtime thread, which is currently under the control of the core's Process method. 

In (7) the core calls the dispatcher's Run method to start executing the enqueued 

dispatcher operation. The argument of Run specifies whether the dispatcher should 

wait when its operation queue is empty. Passing the argument value false causes the 

Run method to return to the caller as soon as the dispatcher is idle. The dispatcher 
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operation in the queue invokes the Process method of the web application (8). After 

executing the Process operation is finished, the dispatcher notifies the coordinator (9) to 

check whether the next dispatcher operation was enqueued from a remote 

environment. If so, the coordinator would pass the token to that environment and 

continue execution there. As the dispatcher's Run method does not return to the caller 

until all dispatcher operations are finished, processing a single web request can include 

the invocation of further operations during one round trip. 

When the dispatcher is finished, the core releases the dispatcher (10) and the current 

runtime thread becomes the original thread 1.x again (11). Finally, in (12) the response 

for the request is returned to the caller of the core's Process method. 

The sequence diagram in Figure 5.8 shows the idea of acquiring and releasing the 

dispatcher to swap the runtime thread. However, this sequence diagram is simplified; 

the full sequence diagram can be found in Appendix B: Runtime Procedures. 

Figure 5.8: Acquiring the dispatcher to process a web request in the runtime thread 



The Extended Plux Component Model for the Web 

114 

Distributed Runtime Thread 

In order to be able to distribute web applications across multiple computers, the 

interaction standard specifies a distributed runtime thread. The distributed runtime 

thread consists of multiple distributed threads that are synchronized with each other 

by the use of a token. It simulates a single coherent thread where each connected 

environment has one thread that constitutes the local runtime thread. Only the local 

runtime thread of the environment that currently has the token is allowed to execute 

code, while other local runtime threads have to wait until the token is passed to their 

environment. 

Figure 5.9 shows a sequence diagram that describes how an operation, which involves 

two environments (e.g., a distributed method call), is executed in the runtime thread. 

At the beginning the Server environment has the token (1) and thus is allowed to 

execute code in the runtime thread. As the Client currently does not have the token (2), 

the Client coordinator called Wait (3) in its local runtime thread, after it has sent the 

token to another environment. Wait blocks the thread until it gets a signal to resume. 

In (4) a proxy object's Do method is called in the runtime thread on the Server. As the 

target object lives on the Client, the operation needs to be executed there. The proxy 

forwards the call to the coordinator on the Server (5), which sends a Call message with 

Figure 5.9: Executing a remote operation in the distributed runtime thread 
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the thread id, the token, the operation to be called, and the operation's arguments to 

the Client (6). After the message is sent, the Server does not have the token anymore 

and thus the coordinator blocks the runtime thread by calling Wait (7). 

In the meantime the Client coordinator receives the message in a background thread for 

communication (8). Communication threads vary for each received message, which is 

indicated by the variable x in the thread id. As the message contains the token for the 

runtime thread, the Client resumes the local runtime thread (9) to execute the received 

operation by calling the method Do on the target object (10). After the operation is 

finished, the coordinator sends a Reply message with the runtime thread id and the 

Result of the operation to the Server (11). As the token is sent with the Reply message, 

the runtime thread on the Client is blocked again (12). When the Server receives the 

message with the token in the communication thread 1.y (13), the coordinator resumes 

the runtime thread (14) and returns the received result to the proxy (15). Finally, the 

proxy returns the result to the caller of the method Do (16). 

5.4.2 Connection Establishment 

Web applications are executed on a web server and are accessed via a web browser on 

a client-side computer. In order to allow a server-side web application to integrate 

client-side plugins, both, the web server and the web browser, must use a Plux runtime 

infrastructure that is connected to each other. This section describes how the server-

side runtime is started by the web server, and how the browser connects the client-side 

runtime to the server. After the server-side runtime and the client-side runtime are 

connected, they remain connected until the user terminates the session or the session is 

terminated because of a timeout. 

When a web application is accessed via a web browser, the web server renders a web 

page and replies it to the web browser, which displays the web page to the user. If such 

a web page contains a Plux web control (see Appendix A: Hosting Plux Web 

Applications), the web control starts the Plux runtime on the server, when it is 

rendered for the first time. Furthermore, the web control inserts the output of the Plux 

web application, which is plugged into the Application slot of the Plux Core extension, 

into the web page on every round trip. If the client-side web browser has installed a 

Plux browser plugin, the web browser detects that the received web page contains 

content of a Plux web application and connects a client-side runtime to the server-side 

runtime, if the user has installed client-side plugins for the web application. 

Figure 5.10 on the next page shows how the runtime infrastructure of a distributed 

web application is assembled when the web application is accessed by a user for the 

first time. In (1) the user triggers the start of the web application by entering a web 

address into his web browser on the Client. The web browser sends a request to the 

web server. During rendering the web page on the Server a Plux web control creates the 

server-side runtime, if it is not already created. (3). While starting the runtime (4), it 

discovers the server-side plugins for the current user and composes the web 
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application. Afterwards, the web application processes the web request (5) and inserts 

the result into a response message, which finally is replied to the web browser (6). 

The web browser receives the response and detects that it was rendered by a Plux web 

application. As the client-side computer has installed plugins for the web application, 

the browser does not yet display the web page, but rather instantiates the client-side 

runtime (7) and calls Connect with the address of the server-side runtime as an 

argument (8). The address of the server-side runtime is retrieved from the response 

message of the web server (see below). The client-side runtime sends a Connect 

message to the server-side runtime, which replies with an Accept message (9). After 

connecting the runtimes, the token is passed from the server-side to the client-side 

runtime, which is now prepared to be started in the runtime thread. By starting the 

client-side runtime (10) the client-side extensions get plugged to the web application. 

As the web application has been changed, the web page needs to be rendered again. 

Thus, the browser resends the web request to the web server again and the web 

application processes it for a second time. Finally, the web server replies the new 

response to the web browser, which now displays the web page to the user. As the 

Figure 5.10: Assembling a distributed runtime infrastucture 
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client-side runtime now is connected to the server, subsequent requests only have to be 

processed once. 

In order to allow the client-side browser plugin to detect that a web server runs a Plux 

web application, the Plux web control renders a script tag with a custom MIME type 

[Freed and Borenstein, 1996] for Plux applications. Furthermore, the script tag contains 

the connection string that is used to connect the client-side runtime to the server. 

Listing 5.1 shows the output of a Plux web control within a form tag that was rendered 

by an ASP.NET web page. The web control inserts the script tag with the MIME type 

application/plux, which indicates that the content of the following div tag is rendered by 

a Plux web application. Additionally, the source attribute of the script tag provides the 

connection address plux://timerecorder.jku.at:25400?session=2658135&app=TimeRecorder, 

which is used by the browser plugin to connect the client-side and the server-side 

runtime. The address is a Unified Resource Identifier (URI) [Berners-Lee et al., 2005] that 

starts with the scheme plux, followed by the address at which the server-side runtime 

is listening for new connections. The query contains the session id and the application 

name, which are used by the connection listener to assign incoming connections to the 

correct runtime instance on the Server. After the script tag, the web control appends the 

output of the web application, which is wrapped within a div tag with an id that 

comprises the keyword plux and the application name, which is TimeRecorder. 

 

Similar to client-side runtimes, if the server discovers sandbox plugins, which need to 

be executed in a Silverlight runtime on the client, the web control renders a further 

script tag (again containing the connection address) that starts the Silverlight runtime. 

The Silverlight runtime connects to the server-side runtime. Then the server-side 

runtime transfers the sandbox plugins to the client-side and the sandbox extensions are 

remotely plugged to the distributed web application. 

<form method="post" action="TimeRecorder.aspx" id="form1"> 
  ... 

  <script type="application/plux"  
      src="plux://timerecorder.jku.at:25400 
           ?session=2658135&app=TimeRecorder" /> 

  <div id="plux:TimeRecorder"> 
    <!-- Plux Web Application --> 
    ... 
  </div> 

  ... 

</form> 

Listing 5.1: The output of a rendered web application including a script tag with 

a custom MIME type for Plux applications and a source attribute  

that provides an address for connecting a remote runtime node 
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5.4.3 Communication Operations 

In Plux, the runtime coordinator is responsible for thread management and 

communication between connected runtime nodes. For this, it uses a set of 

communication operations, which are described in this section. The coordinator uses 

channels to transfer messages from one environment to another. Channels provide an 

abstraction from the transport layer and are exchangeable. The current implementation 

of the component model uses channels that are connected via sockets and 

communicate via the Transmission Control Protocol (TCP) [Postel, 1981]. 

Plux distinguishes between target operations that are sent to a specific target 

environment to be executed there and token operations that can be executed on any 

environment that currently has the token. An environment without the token does not 

know which environment currently has the token. Thus, token operations are sent to 

one environment after another, until the environment with the token receives them. 

Every environment that forwards a token operation to another environment 

temporarily stores that operation until it either receives a reply message indicating that 

the operation was executed or until it receives the token to execute the operation itself. 

This is necessary because the token might be on the way to an environment, which just 

forwarded the token operation. In that case, token operations would not be executed 

by any environment if the operation would not be temporarily stored. Figure 5.11 

shows an example. 

In the example of Figure 5.11 a runtime on an Application Server and a runtime on a 

Client computer are connected to a runtime on a Web Server. The coordinator of the 

Application Server needs to execute a token operation TokenOp in the thread 2.1 (1). As 

the environment currently does not have the token, it forwards the operation to the 

Web Server (2) and stores the operation (3) before it waits for a reply (4). 

When the Web Server receives the token operation, it does not have the token, too, and 

thus forwards the operation to the Client (5), and stores the operation (6). At the same 

time, the Client, which currently has the token, is executing code in the runtime thread 

1.0 and sends a target operation to the Web Server (7). As the target operation is sent in 

the runtime thread, the token is passed to the Web Server, too. Thus, the Client does not 

have the token anymore (8) and blocks the runtime thread (9). Now the Client receives 

the token operation (10). As it does not have the token anymore and as it is not 

connected to any environment that has not yet received the token operation, it replies a 

message to the Web Server that the token operation is still pending (11). In order that an 

environment knows to which environments the token operation was already sent, the 

coordinator appends the set of visited environments to messages for token operations. 

In the meantime the Web Server received the target operation with the token (12), which 

was sent by the Client, in a communication thread 1.y. As the Web Server has stored the 

pending token operation, it can now start executing it in the thread 2.1 (13), which is 

the thread in which the operation was sent from the Application Server. The 

communication thread 1.y has to wait (14) until the token operation is finished, before 
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it is allowed to start executing the target operation. If it would not wait and start the 

target operation in parallel, the token might be sent to another environment while 

executing the target operation. In this case, the token operation would be executed 

twice. On executing the token operation, the coordinator removes it from the pending 

operations store (15) and sends a Reply message to the Application Server that the token 

operation has finished executing successfully (16). 

When the Application Server receives the Reply message, it removes the finished token 

operation from its operation store (17) and resumes the waiting thread 2.1 (18). If the 

Application Server would receive a Reply message that reports that the operation is still 

pending, it would not remove the operation from the store, but would forward it to the 

next connected environment instead. 

After the Web Server has sent the Reply message, it resumes the communication 

thread 1.y (20) to start the pending target operation in the runtime thread 1.0 (21). At 

this point, processing the TargetOp message has finished and the coordinator can 

process the next message, which is the Reply message from the Client that reports that 

the token operation is still pending (22). Becauses the operation is already executed and 

removed from the pending operations store, the Web Server ignores the message. If the 

Figure 5.11: Executing a token operation on the environment with the token 
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token operation would still be stored, the Web Server would send the operation to the 

next environment that did not yet receive the operation. If there would be no 

environment left, it would forward the Reply message with the argument Pending to the 

Application Server. After executing the target operation (23), the result and the token 

will be replied back to the Client computer (not shown). 

Each operation, whether it is a target operation or token operation, is answered by a 

Reply message, which returns a result to the sender. The reply contains an operation 

status as well as result arguments. The status can be Success, Pending, or Exception, the 

result arguments depend on the status: 

 Success is replied if the execution of the operation was completed successfully. 

In this case, the result arguments are operation-specific and are described in the 

subsections for the different operations below.  

 Pending is replied if the operation was not executed, because the target 

environment for an operation was not found. This can happen for token 

operations, if the token was not in any of the environments, to which the 

operation was already sent. If an environment receives a reply with the status 

Pending, it forwards the operation to the next unvisited environment. The result 

argument is the set of already visited environments. 

 Exception is replied if the execution of an operation raised an exception. The 

result arguments contain the exception object, which is then raised by the 

environment that originally sent the operation. 

In order to let the receiver of an operation know in which thread an operation needs to 

be executed, each operation contains the thread id of the thread in which the operation 

was sent. Vice versa, in order to let the receiver of a reply know which thread should 

be continued, each reply contains the thread id, too. 

The following subsections list the different communication operations. Each subsection 

describes the purpose of the operation, which parameters it needs, and which results it 

returns by the reply message. 

Call 

Call is a target operation, which is used to instruct the coordinator of a specific target 

environment to call a method of a given target object. The arguments comprise an 

object identifier, which references the target object on the target environment (see 

Section 5.4.6 Object Reference Identity), the method to be called, and an array of 

arguments that are passed to the method, when it is called. The reply message contains 

the return value of the executed method, or no result arguments, if the method does 

not have a return type. 
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The Call operation is used by proxy objects to forward method calls from remote 

environments to the original object on the original environment. Furthermore, the Call 

operation is used by the composer for the distributed composition process. For 

example, the composer starts a composition sequence for a remote extension by calling 

the Activate composition operation on the composer of the remote environment with 

the extension as an argument. 

Invoke 

Invoke is a token operation that is used to send a dispatcher operation to the 

environment which currently has the token. As only the dispatcher in the environment 

with the token has a valid state of its operation queue, it is the only environment that is 

allowed to enqueue new dispatcher operations. The argument of Invoke is the 

dispatcher operation to be enqueued. The reply only comprises the operation status, 

but has no additional result arguments. 

The Invoke operation is used by the coordinator, when it handles the dispatcher's 

OpEnqueued event. If the environment, in which the operation is invoked, does not 

have the token, the operation is sent to the environment with the token. As soon as the 

operation is about to be executed, the token is passed to the original environment and 

the dispatcher operation is executed there. 

GetToken 

GetToken is a token operation, which is used to request the token in order to continue 

execution in the runtime thread. It marks the token to be sent to the sender of GetToken, 

as soon as the runtime thread is idle. GetToken has no arguments and no return value.  

The GetToken operation is used by the coordinator, when it handles the dispatcher's 

Acquired event. If the coordinator does not have the token, it blocks the runtime thread 

and sends the token request to the environment with the token. When the sender 

receives the token, it resumes the runtime thread to continue executing. 

SetToken 

SetToken is a target operation, which is used to pass the token to a specific target 

environment in order to continue executing the runtime thread there. This operation 

can only be sent from the environment that has the token. After sending the operation, 

the environment does not have the token anymore and thus blocks the local runtime 

thread. The argument of SetToken is the token. The reply has no operation-specific 

result arguments. 

The SetToken operation is used to send the token to another environment when the 

runtime thread becomes idle and the token was requested by this other environment 

before. It is also used when an upcoming dispatcher operation was enqueued from a 

remote environment and needs to be executed there. 
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Disconnect 

Disconnect is a target operation, which disconnects the sender environment from the 

target environment. As disconnecting an environment changes the topology of the 

distributed runtime, this operation only can be performed in the runtime thread when 

it is idle. Otherwise, disconnecting an environment would disturb the execution of a 

communication operation. Disconnect has an argument that specifies whether the 

receiver should keep the token. When a runtime is disconnecting its last connection, it 

instructs the receiver not to return the token in the Reply message, even if it is sent in 

the runtime thread. The result arguments of the reply either contain the token, or not. 

The Disconnect operation is used by the coordinator, after a runtime closed down. After 

the operation was sent to the last connected environment, the token stays on this 

remote environment and the local coordinator releases the dispatcher. Finally the 

former local runtime thread terminates, too.  

5.4.4 Object Transmission Mode 

Objects that are transferred from one environment to another exist on multiple 

environments and are called distributed objects. For distributed objects the remote 

environment either creates a copy of original object, which is then called a 

serialized object, or it creates a proxy object for the original object, which is then called a 

remote object. This section describes the difference between serialized objects and 

remote objects and which of them is used for which data type. 

Serialized Objects 

Serialized objects are completely transferred to a remote environment, i.e., the data of 

all their fields gets serialized, transferred to the remote environment, and deserialized 

there.  As the remote environment has a copy of the original object, method calls on 

serialized objects are executed locally. Thus, the call and its arguments need not be 

forwarded to the original environment. 

The advantage of serialized objects is that they do not cause any communication 

overhead for method calls. However, the disadvantages are that they cause more 

communication overhead when they are transferred themselves, that the 

implementation type of a serialized object has to be available on the remote 

environment in order to be able to instantiate the object, and that modifications on the 

serialized object have to be synchronized with the original object in order to keep the 

objects consistent. 

Objects are transferred as serialized objects if they have one of the following data types: 

 Value types. Value types are integer types, floating-point types, the boolean type, 

user-defined structs, and enumeration types. 
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 Types that are decorated with the Serializable attribute. Classes that are decorated 

with the Serializable attribute are serialized and deserialized using reflection. 

Listing 5.2 shows an example of a TimeRecord class that is decorated with the 

Serializable attribute.  

 

 

 Types that implement the interface ISerializable. Classes that implement the 

ISerializabe interface are serialized using the interface method GetObjectData. 

The serializer calls this method and passes a SerilizationInfo object as an 

argument. The object writes its data into the SerilizationInfo object, which then 

gets serialized. To deserialize such an object on the remote environment, the 

serializer uses a specific constructor that gets the SerilizationInfo object as an 

argument. Listing 5.3 shows an example of a TimeRecord class that implements 

the ISerializable interface. 

 

 

Remote Objects 

Remote objects are not copied to a remote environment. Thus, their data is not 

transferred, but only their data type, which describes the object's interface. The remote 

environment creates a proxy object, which forwards method calls to the original object. 

As method calls are eventually executed in the original environment, arguments need 

to be transferred on each method call. 

The advantages of remote objects are that they cause low communication overhead on 

object transfer, that only the interface types need to be available on the remote 

environment needs, and that there is no need for synchronization if these objects get 

modified, because the state of remote objects is only stored in the original object. 

However, the disadvantages of remote objects are that they cause communication 

overhead on every method call and that they are difficult to debug. 

 

[Serializable] 
class TimeRecord { 
  DateTime start; 
  DateTime end; 
} 

Listing 5.2: TimeRecord class decorated with the Serializable attribute 

class TimeRecord : ISerializable { 
  DateTime start; 
  DateTime end; 
  TimeRecord(SerilizationInfo info) { ... } 
  void GetObjectData(SerilizationInfo info) { ... } 
} 

Listing 5.3: TimeRecord class that implements the ISerializable interface 



The Extended Plux Component Model for the Web 

124 

Objects are transferred as remote objects if they have one of the following data types: 

 Reference types that are not marked with the Serializable attribute and do not 

implement the ISerializable interface. Thus, every object of a reference type that is 

not transferred as a serialized object is transferred as a remote object. 

 Reference types that cannot be created in the remote environment. Even if a class is 

implemented to be serializable, the serializer creates a remote object if the 

implementation type is missing on the remote environment. 

Customized Object Transmission 

For some objects, such as objects of the types Assembly, Type, MethodInfo, or Delegate, it 

is neither possible to transfer them as serialized objects nor as remote objects. For those 

objects, the serializer uses a custom transmission mode, which is implemented by 

custom formatters (see Section 5.4.5) that are registered for a set of specific data types. 

By using custom formatters, applications can be made interoperable between different 

technologies. For example, a Type object or a List object in a .NET environment can be 

transferred to a Class object or to an ArrayList object in a Java environment. Even 

though a Java implementation of the Plux component model is part of our future work, 

objects of several .NET library classes (e.g. List, Dictionary, or HashSet) are transferred 

by custom formatters because they can be serialized in a more compact way as if they 

would just serialize their fields via reflection. 

Furthermore, since it depends on an object's data type, if the object is transferred as a 

serialized object or as a remote object, the implementer of the data type determines the 

transmission mode. However, in some situations a developer wants to specify the 

transmission mode of existing data types. In this case, he can use custom formatters 

that transfer distributed objects in the desired way. 

5.4.5 Object Transmission Format 

The interaction standard specifies a technology-independent object transmission 

format that can be written in different languages. The current implementation of the 

Plux component model provides writer and reader implementations for XML and for 

the more compact Plux transmission language, which is aligned to the transmission 

format. This section describes the structure of the transmission format, the Plux 

transmission language, and the format for common data types.  

The transmission format comprises the entities Elements, Properties, Collections, and 

Literals:  

 Elements map to objects, types, fields, and to any further entities that are used to 

describe the data. Elements comprise an element kind, an optional identifier 

and a set of properties. 
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 Properties are key/value pairs, where the value can be an element, a collection, 

or a literal. 

 Collections are homogenous sequences containing a number of elements, a 

number of collections, or a number of literals. Collections can be empty. 

 Literals represent simple values such as numbers, booleans, or strings. 

The Plux serializer uses the top-level element kinds Object, Type, Method, Assembly, 

Array, Delegate, Null, Proxy, Destroyed, and Custom. These elements are serialized and 

deserialized by appropriate formatters. Each formatter can define custom element 

kinds for its sub-elements. As the output of each custom formatter is wrapped within a 

Custom element, they need not care about name clashes of elements with those of other 

formatters. Property keys only need to be unique within the same element, which is 

always formatted by the same formatter. 

In order to allow two connected runtimes to communicate with each other, they have 

to use the same formatters. Thus, at connection time the connecting runtime node 

sends a list of its registered formatters in the connect message. The runtime that 

receives the connect message compares the formatter list with its registered formatters. 

Only if they match, the receiver replies with an accept message, otherwise it replies 

with a reject message containing a list of missing formatters. 

Plux Transmission Language 

The Plux transmission language is designed to represent the entities described above in 

a compact way. It is text-based and readable by humans. Listing 5.4 shows its 

grammar. The basic elements of the language are kind, identifier, key, and value, which 

can be any sequence of characters. Special characters like (, ), [, ], {, }, <, >, ", \ have to 

be escaped with an backslash (\). An element starts with its element kind followed by an 

optional identifier and an optional property list. The identifier is enclosed in angle 

brackets; the property list is enclosed in braces and contains one or multiple properties. 

A property starts with its property key, followed by its value that is enclosed in 

parentheses. A property value can be an element, a collection, or a literal. A collection is 

enclosed in brackets and contains a list of elements, a list of collections, or a list of literals. 

A literal is a string that is enclosed in double quotes. 

Element    = kind ['<' identifier '>'] ['{' Property {Property} '}']. 

Property   = key '(' ( Element | Collection | Literal ) ')'. 

Collection = '[' ( {Element} | {Collection} | {Literal} ) ']'. 

Literal    = '"' value '"'. 

Listing 5.4: Grammar of the Plux transmission  language 
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The following subsection uses the Plux transmission language to describe the output of 

formatters for common data types. The formatters follow a naming convention 

according to which element kinds start with uppercase letters while property keys start 

with lowercase letters. Since there are only a few top-level element kinds and since 

property names only need to be unique within the same elements, the formatters use 

shortcuts for element kinds and property keys. 

Format Example 

Listing 5.5 shows a part of the implementation of the Call operation and how it is 

instantiated and assigned to an op variable. Figure 5.12 shows how this object is 

serialized by the object formatter. The class Call inherits the base class Operation and 

has the field method of type String and the field args of type Object[]. Further fields are 

not shown. The base class Operation implements the interface IOperation and has the 

field threadId of type String.  

 

 

Figure 5.12 describes the format of the serialized operation object from Listing 5.5. The 

object was formatted with the object formatter, which is used for objects without a 

custom formatter. The object's type was formatted with the type formatter. The object 

formatter generates an Object element with an object identifier 1.1 that is unique for 

every application run (see Section 5.4.6 Object Reference Identity). The Object element 

has a type property (for the object's type) containing a Type element as well as a levels 

property containing a collection of Level elements for all inheritance levels with the 

field values for the respective inheritance level. 

As types are objects too, the Type element has a unique object identifier 1.2. Type 

elements have the properties assembly, name, generic types, and interfaces. The assembly 

property contains an Assembly element, which is formatted by the assembly formatter. 

The name property contains the type name, which is the literal Call. Only if a type is 

generic, the formatter generates a generic types property that contains a collection of 

Type elements that describe the generic type arguments. If a type implements one or 

more interfaces the formatter generates the interfaces property that contains the 

interface types. Interface types are added in order to allow the serializer to create a 

proxy that implements these interfaces, if the implementation type cannot be loaded on 

the target environment. 

class Call : Operation {        class Operation : IOperation { 
  String method;                  String threadId; 
  Object[] args;                  ... 
  ...                           } 
} 
 
IOperation op = new Call("SetAge", new object[] { 23 }, ...); 

Listing 5.5: Implementation and instantiation of a Call operation 
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The Level elements of the Object element's levels property describe the field values at 

every inheritance level. The inheritance level is given by the Level element's identifier. 

Level 0 describes the fields of the object's implementation type; level 1 describes the 

fields of the object's base type. Each Level element has a fields property that contains a 

collection of Field elements. The identifier of a Field element is the field name and a 

value property contains the field value, e.g. level 0 has the Field element method with a 

value property containing the method name SetAge as literal. The Field element args has 

a value property with an Array element. 

5.4.6 Object Reference Identity 

The interaction standard specifies object reference identity for distributed objects. For 

objects that are transferred from one environment to another several times, the remote 

environment must always get a reference to the same object copy in the case of a 

serialized object, or the same proxy object in the case of a remote object. Thus, two 

references that are the same in the original environment must be the same in the 

remote environment, too. To achieve reference identity, a copy or a proxy is only 

generated once and is reused for subsequent transmissions. Furthermore, if the object 

on the remote environment is sent back to the original environment, the original 

environment must receive the original object, but not a copy or a proxy.  

Figure 5.13 on the next page describes how reference identity for distributed objects is 

implemented by the use of reference stores. When an environment sends an object to a 

remote environment (1), the serializer registers the object in its reference store (2) if it 

was not already registered. By registering the object it gets a unique object id, which is 

stored with the object. The identifier consists of the environment id and a consecutive 

number. In Figure 5.13, the object A gets the object id 1.1. Next, the coordinator 

transfers the serialized object and its object id to the remote environment (3). When the 

remote environment receives the object (4), the serializer checks whether the object 

Figure 5.12: Output of the object formatter and the type formatter 
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with the id 1.1 is already registered in the remote reference store. If not, the serializer 

generates a new instance of the object and registers it with its id (5); otherwise it reuses 

the already registered object. Finally, the remote environment can use the distributed 

object (6). 

When the distributed object is sent back to the original environment (7), the serializer 

on the remote environment finds the object in the reference store (8) and thus serializes 

it with id 1.1 and transfers it back (9). The original environment receives the message 

with the serialized object (10) and finds the object id 1.1 in its reference store (11). Thus, 

the serializer reuses the original object (12). 

5.4.7 Object Data Synchronization 

For serialized objects the serializer generates a copy of the original object on the remote 

environment. If the object gets modified on the remote environment, the original object 

is out of date. In order to keep the original object synchronized with all copies, Plux 

updates all modified objects on each token pass. Thus, every object that is accessed 

within the runtime thread is up to date. 

Figure 5.14 shows how object data synchronization is implemented by the use of profile 

stores. When a serialized object is sent to a remote environment (1) the serializer 

generates a profile for the object (2), which contains a copy of the object's data and a 

link to the reference in the reference store, which is generated on the first transfer, 

too (3). Now the object gets serialized (4), transferred to the remote environment, and 

deserialized there (5). On deserializing the object, the serializer also stores a profile (6) 

Figure 5.13: Implementing object reference identity by using reference stores 
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in the remote profile store and registers the object in the remote reference store (7) 

before the received object can be used on the remote environment (8). 

Let's assume that during execution of the received message on the remote environment 

the data of the serialized object changes from A to B (9). When a reply message is sent 

back (10), the serializer compares the values of all objects in the profile store with the 

values of the corresponding objects in the reference store. If any profile value differs 

from its object's value, the serializer updates the profile (11) and includes the new 

values in the reply message (12). When the original environment receives the message 

(13), it updates all modified objects as well as their profiles (14), before it continues 

executing in the runtime thread (15). 

Incremental Data Transmission 

In order to be able to synchronize modifications on serialized objects, every 

environment stores a profile for the object. The profile always stores the state of the 

object as it currently is on the remote environment. Thus, when a message is sent to a 

remote environment, the serializer can check if any object has been modified. 

Furthermore, if an object is transferred a second time, only the object id and any 

modifications need to be transferred, but not the whole object. This reduces the 

communication overhead for serialized objects. 

Figure 5.14: Achieving object data synchronization by the use of a profile store 
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Figure 5.15 shows an example. When the Server sends an object with the value B to the 

Client (1), it finds the object in the profile store (2). As the object was not modified on 

the Server, the serializer only transfers the object id in the sent message. When the 

Client receives the message (4) it again finds the object in its reference store (5) and can 

use it without updating the serialized object (6). 

 

 

Multiple Profile Stores 

Profiles store the state of a distributed object as it currently is on the remote 

environment. If an environment is connected to multiple environments, each connected 

environment can have a different state of a distributed object. Thus, environments need 

to maintain an individual profile store per connected environment. 

In Figure 5.16 the Web Server is connected to a Client environment and an Application 

Server environment. At the beginning a serialized object with the id 1.1 already was 

sent to each environment while it had the value A. Thus, each profile store has a profile 

with the value A for this object. In (1) the Client has the token and modifies the value of 

Figure 5.15: Incremential data transmission by the use of profile stores 

Figure 5.16: Maintaining an individual profile store per connected environment 
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the object to B. Then the token is passed to the Web Server (2), whereat the Client 

serializer compares its profiles with the objects in the reference store, updates the 

modified profiles (3), and writes the modifications to the sent message (4). 

When the Web Server receives the message (5) it updates the object and also its profile 

in the profile store for the Client (6) before the Web Server continues executing the 

runtime thread (7). In (8) the token is sent to the Application Server. Now the serializer 

compares the objects in the profile store for the Application Server with the objects in the 

reference store (9). As the Web Server maintains a special profile store for the Application 

Server, it detects that the serialized object on the Application Server is not up to date. 

Thus, it serializes the modification into the message (not shown in Figure 5.16 as these 

steps are the same as in Figure 5.14). 

5.4.8 Object Lifetime Management 

Every distributed object lives on multiple environments at the same time, i.e., the 

remote environment either has a copy of the original object in the case of a serialized 

object, or a proxy object in the case of a remote object. Object copies and proxy objects 

are linked to the original object via reference identifiers, which are maintained by the 

reference store (see Section 5.4.6 Object Reference Identity). Furthermore, the data of 

serialized objects is synchronized by the use of profiles, which are maintained by the 

profile store (see Section 5.4.7 Object Data Synchronization). A distributed garbage 

collection mechanism manages the lifetime of distributed objects and removes entries 

in the reference store and profiles in the profile store if they are not required anymore. 

As distributed garbage collection works differently for serialized objects and for 

remote objects, its description is separated in two subsections for serialized objects and 

for remote objects. 

Garbage Collection for Serialized Objects 

For a serialized object, the entries in the reference store and in the profile store need to 

be kept on an environment, as long as the object lives on this environment. If a 

serialized object dies on an environment, the environment can remove its entries in the 

reference store and in the profile store. As soon as the object lives only on one 

environment, it is not distributed anymore. Thus, this environment can remove the 

entries in the reference store and in the profile store for this object, too. In order to let 

the environment know whether an object is distributed or not, the reference store 

counts the number remote environments in which an object is currently living. 

Entries in the reference store have a reference to a distributed object. In order to allow 

an object to be destroyed on an environment, the strong reference needs to be changed 

into a weak reference when the token is passed to another environment. When an 

environment receives the token, weak references are changed into strong references 

again. As an environment without the token is considered idle, the local garbage 

collector is started after each token pass, by which unreferenced objects get collected. 
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Figure 5.17 shows an example for the distributed garbage collection mechanism. In the 

example a serialized object is sent from the Server environment to the Client 

environment. Before the serialized object is sent to the Client (1), the Server creates a 

profile in the profile store (2) and an entry in the reference store (3). As the object is 

currently living only on the Server, the environment counter is initially set to 1. Similar 

to the data of serialized objects, this counter also needs to be synchronized with remote 

Figure 5.17: Distributed garbage collection for serialized objects 
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environments. Thus, the counter is stored in the profile for this object, too. Next, the 

serializer writes the counter and the data of the object to the message to be sent (4). 

After the message was sent, all references to serialized objects in the reference store are 

changed into weak references (5) and the local garbage collector gets started. If a 

serialized object is not referenced by any object on the Server anymore, the serialized 

object gets destroyed (6). 

In the meantime the sent message is received on the Client (7). The serializer on the 

Client creates an entry for the received object in the profile store (8) and in the reference 

store (9). As the object was not already registered at the reference store, the counter for 

the number of remote environments is incremented to 2 in the entry of the reference 

store. The counter in the profile holds the value that is currently known on the remote 

environment. Now the object can be used on the Client (10). 

When the token is passed back to the Server (11), the serializer on the Client compares 

all profiles with the entries in the reference store to detect their modifications (12). As 

the serialized object was not modified but only the counter for remote environments 

was incremented, the serializer increments also the counter in the profile store (13) and 

writes the new number of remote environments to the message to be sent (14). After 

the message was sent, all references to serialized object are changed to weak references 

on the Client (15). 

On receiving the message on the Server (16), the Server changes all weak references to 

serialized objects back to strong references (17) so that no serialized object can be 

garbage collected while the environment has the token. This is necessary because if a 

distributed object would be modified and afterwards garbage collected before the 

token is sent to another environment, the modification could not be detected on the 

next token pass. Next, the environment counter of the serialized object gets updated in 

the profile store to 2 (18). When the serializer updates the environment counter in the 

reference store, it detects that the object was already destroyed on the Server. Thus, it 

decrements the environment counter to 1, i.e., it remains the same value as it was 

before. Furthermore, since the object does not exist anymore on the Server, the 

serializer removes the entry from the reference store (19). However, the profile for the 

serialized object still has a reference to the entry, which is required when the token is 

passed to the Client the next time. In (20) execution continues on the Server. 

When the token is passed to the Client in (21), the serializer compares all entries in the 

profile store with the entries in the reference store (22) and detects that the object was 

already destroyed. Thus, it writes this information and the updated environment 

counter to the message (23) and removes the entry for this object in the profile store 

too (24). This causes that the profile store entry and the reference store entry are 

destroyed (25). After sending the message, the Server again changes all strong 

references in the reference store to weak references (not shown). 

Finally, the Client receives the message (26) with the token and changes its weak 

references in the reference store into strong references (27). On deserializing the 
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message, the serializer detects the destroyed object and removes its profile form the 

profile store (28), which causes the entry to be destroyed. Next, the serializer updates 

the environment counter for the object in the reference store (29). As the number of 

remote environments is 1 now, the object is not distributed anymore and only lives on 

the Client environment. Thus, the serializer also removes the entry for the object in the 

reference store (30) and continues execution in the runtime thread (31). As the object is 

no longer referenced by the reference store, the local garbage collector can destroy the 

object as soon as it is not used on the Client anymore. 

Garbage Collections for Remote Objects 

The distributed garbage collection mechanism for remote objects differs from the 

distributed garbage collection mechanism for serialized objects. Remote objects are not 

copied to other environments, but instead, proxy objects are generated on the remote 

environments. In order to be able to forward method calls to the original object, Plux 

must ensure that the original object is not destroyed until all proxy objects are 

destroyed. The original object as well as all proxy objects are registered in the reference 

store in order to link them together. However, in order to ensure that original objects 

are not destroyed prematurely, the reference to the original object in the reference store 

is never changed into a weak reference. Conversely, as proxy objects cannot be 

modified and need not be synchronized with the original object, references to proxy 

objects in the reference store are always weak references. Therefore proxy objects can 

also be destroyed on an environment that has the token. The original object can be 

destroyed as soon as all proxy objects have been destroyed. Thus, the entries in the 

reference store for remote objects have a proxy counter. When the proxy counter is set 

to 0, the object is removed from the reference store and can be collected by the local 

garbage collector. 

Figure 5.18 shows an example for the distributed garbage collection of a remote object 

that lives on the Server environment and is accessed by a proxy object on the Client 

environment. When the token is passed from the Server to the Client (1), the Server 

keeps a strong reference to the original object in the reference store and sets the initial 

value 0 to the proxy counter (2). The profile store on the Server also has an entry for the 

remote object (3). However, as proxies cannot be modified on a remote environment, 

the profile only stores the object's proxy counter, as it is known on the remote 

environment, but not the object's values. On transferring a remote object, the serializer 

compares its proxy counter in the profile store with the proxy counter in the reference 

store (4) and sends the counter only if it was incremented or decremented (5). 

When the Client receives the message with the token (6), it creates a proxy object, adds 

an entry in the profile store as well as an entry with a weak reference to the proxy in 

the reference store, and increments the proxy counter to 1 (7). Now the Client continues 

executing in the runtime thread (8). In (9) the proxy object will be destroyed 

immediately by the local garbage collector as soon as it is not used anymore. 
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When the token is sent back to the Server (10), the Client detects that the proxy object 

has been destroyed (11). Thus, it decrements the proxy counter for this object in the 

reference store (12) and notifies the Server that the object with the id 1.1 was destroyed 

on the Client (13). Since the proxy counter in the reference store now is equal to the 

proxy counter in the profile store, there is no need to send it with the message. Finally, 

the Client removes the entries for the destroyed object in the reference store (14) and in 

the profile store (15). 

When the Server, which holds the original object, receives the message with the 

destroyed object (16), it removes the profile for this object from the profile store (17). 

Furthermore, as the proxy counter still is set to 0, the Server and removes the entry in 

the reference store (18) too, before it continues executing the received message (19). 

Now the original object can be destroyed as soon as it is no longer used on the Server. 

Figure 5.18: Distributed garbage collection for remote objects 
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5.4.9 Interoperability 

In order to avoid that Plux is limited to a certain technology, the specifications in the 

interaction standard are not based on technology-dependent communication 

standards, such as .NET Remoting or .NET binary serialization. Plux uses a text-based 

transmission format for distributed communication (see Section 5.4.5 Object 

Transmission Format). Custom formatters (see Section 5.4.4 Object Transmission 

Mode) enable the interoperability between different technologies. For example, with 

custom formatters, .NET type information or .NET collection objects can be translated 

into adequate Java type information or Java collection objects. However, the object data 

synchronization specification (see Section 5.4.7) requires support for reflection, and the 

object lifetime management specification (see Section 5.4.8) requires a technology with 

local garbage collection support. 

5.5 Customization Standard 

The customization standard specifies a settings model for extensions allowing users 

and administrators to configure their extensions (see Section 3.5 Customization 

Standard). As this settings model is the same for web applications, the extended 

component model for the web does not include any further specifications for the 

customization standard. However, the current implementation of the customization 

standard requires that the settings for extensions must be deployed to the same 

environment as the extensions. 
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6 Component Model Implementation 

This chapter describes the Plux composition infrastructure, which implements 

the Plux component model. The composition infrastructure is assembled from 

several runtime modules, which are exchangeable and can be extended with 

optional runtime add-ons. The Plux composition infrastructure for the server is 

hosted and accessed with ASP.NET web pages, the composition infrastructure 

for the client is provided by browser plugins for different browsers, by a client-

side standalone implementation, and by a Silverlight implementation, which is 

deployed on the server. 

The Plux composition infrastructure, which implements the specifications of the Plux 

component model, allows executing distributed multi-user web applications built from 

Plux components. The following sections describe the ingredients of the composition 

infrastructure and its architecture. 

6.1 Composition Infrastructure 

The composition infrastructure of Plux, which implements the Plux component model, 

consists of the Server Runtime and several Client Runtimes, each having its own 

Discoverer implementation (see Figure 6.1 on the next page). The Server Runtime enables 

the execution of component-based web applications that are built from Plux 

extensions. It hosts an individual Runtime Node per user, which assembles and 

maintains the composition for one user. Furthermore, each Runtime Node can be 

connected to remote Runtime Nodes. Every connected set of Runtime Nodes constitutes a 

coherent composition infrastructure, which assembles and maintains a single 

composition state for a distributed web application. Remote Runtime Nodes are hosted 

by Client Runtimes, which can be implemented as web browser plugins, as Silverlight 

applications, or as standalone applications. A Runtime Node is connected to the Server 

Runtime when the web browser requests a Plux web application, when a sandbox 

plugin is composed for the first time, or when the standalone Client Runtime is started 

(see Section 5.4.2 Connection Establishment on page 117). The Server Runtime's 

Connection Listener allows Client Runtimes to connect their Runtime Node to the 

Runtime Node on the server. Client Runtimes may also have a Connection Listener in 
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order to connect themselves to each other. The User Store maintains the hierarchy of 

users and user groups. It is used by the Multi-user Discoverer, which assigns server-side 

plugins and sandbox plugins to the respective Runtime Nodes. The client-side Discoverer 

discovers client-side plugins and adds them to the composition infrastructure via the 

Runtime Node of the Client Runtime. The server-side discoverer and the client-side 

discoverers are not part of the Plux runtime, but are implemented as exchangeable 

extensions (see Section 3.2 Deployment Standard on page 43). 

Runtime Architecture 

Every runtime node consists of several runtime modules, each of which implementing 

a specific part of the component model. As all runtime modules are exchangeable, the 

component model implementation is adaptable and can be extended with optional 

runtime modules (see Section 6.2 below). How runtime modules can be exchanged is 

described in Appendix A.2: Runtime Configuration. Figure 6.2 shows the runtime 

modules that constitute a runtime node. The core modules implement the base 

composition model for component-based desktop applications and can be used 

independently from the web modules. The web modules implement the extended 

component model for the web and enable support for component distribution. 

The external Discoverer discovers new plugins and contracts in a background thread 

and uses the Dispatcher (1) to add them to the Type Store (2) in the runtime thread. The 

Type Store allows storing and retrieving type information for extensions and triggers 

the Composer to compose new extensions (3) when new plugins were added. The 

Composer queries the current composition state in the Instance Store (4) to find matching 

slots for the plugs of new extensions. The Instance Store maintains the composition state 

of an application and stores all instances of extensions and their connections. If the 

Composer finds a matching slot for a new extension, it instructs the Qualifier to check 

Figure 6.1: Plux composition infrastructure 
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whether the extension with the matching plug implements the required interfaces and 

whether it provides the required parameters (5). For this, the Qualifier retrieves the slot 

definition for the matching slot from the Type Store (6) and compares the slot 

definition's requirements with the extension's provisions. If the extension is qualified to 

be composed, the Composer plugs the matching plug into the slot and updates the 

composition state in the Instance Store (7). The Composer uses the Notifier (8) to raise 

appropriate composition events during composition operations. The Notifier maintains 

all registered event handlers, regardless of if they were registered by the extensions' 

meta-objects or by composition behaviors. If some code accesses the extension object of 

an extension, e.g., in an event handler of a Plugged event, the Composer starts a new 

composition sequence for the extension and instantiates its extension object by the use 

of the Activator (9). The Activator uses the Loader to load the assembly that implements 

the extension (10), if it was not already loaded. The Loader retrieves the location of the 

assembly via an assembly Uri that is stored in the extension's meta-object, and possibly 

downloads the assembly from a different computer before it is loaded. For example, 

the Loader of the Silverlight runtime needs to download assemblies from the server 

before it can load them on the client-side Silverlight environment. After activating the 

extension, the Composer opens the extension's slots and again uses the Type Store (11) to 

find contributors for the extension's slots. It composes them by repeating steps (4) to 

(11) recursively, until all slots have been filled with matching extensions. 

If the Composer needs to start a composition sequence for a remote extension, it 

forwards the composition operation to the remote environment via the Runtime 

Coordinator (12). The Runtime Coordinator serializes the message with the Serializer (13). 

Figure 6.2: Plux runtime modules 
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The Serializer uses the Reference Store to register distributed objects and to get a unique 

object id for them (14). Furthermore, the Serializer uses the Profile Store to create and 

update profiles for serialized objects (15) in order to implement object data 

synchronization. The Profile Store uses the Reference Store to link profiles to their 

original object (16). Finally, the Runtime Coordinator uses a Channel (17) to send a 

message to the remote environment. 

When the Runtime Coordinator receives a message via a Channel (18), it uses the 

Serializer (19) to deserialize the message. The Serializer uses the Reference Store (20) to 

query received object ids and to reuse existing objects that were already registered. If 

an object was not yet registered in the Reference Store, the Serializer creates a new 

instance of the distributed object and registers it in the Reference Store. For instantiating 

proxy objects, the Serializer uses the ProxyFactory (21), which dynamically generates 

proxy types from interface descriptions and uses them to instantiate proxy objects. On 

deserializing a message, the Serializer uses the Profile Store (22) to update profiles and 

objects that were modified on the remote environment, or to create new profiles if they 

do not already exist. The Profile Store links profiles to their object in the Reference Store 

(23). As soon as the message is deserialized, the Runtime Coordinator uses the Dispatcher 

(24), if the message needs to be executed in the runtime thread. If the received message 

is a composition operation to be performed, the Runtime Coordinator forwards the 

operation to the Composer (25). Finally, the Dispatcher forwards dispatcher operations to 

remote environments using the Runtime Coordinator (26), if they need to be enqueued 

by the Dispatcher there. 

All runtime modules and all extensions can use the Logger (27), e.g., to log an 

upcoming task or to log that a task is finished. The logger interface provides different 

verbosity levels for log messages: Quiet, Minimal, Normal, Detailed, and Diagnostic. The 

sender of a log message can choose the verbosity level for each log message. Whether 

the message gets logged depends on the verbosity level that is set at the runtime 

configuration. Extensions access the Logger via their meta-objects. 

6.2 Runtime Add-ons 

Runtime add-ons are optional runtime modules that can be installed to extend the Plux 

runtime. The mandatory runtime modules provide hooks to which runtime add-ons 

can listen and by which they can influence their behavior. This section describes the 

optional runtime modules Security Add-on, Testing Add-on, and Debugging Add-on, 

which are provided by the composition infrastructure. 

Security Add-on 

By default, the Plux composition infrastructure allows adding any plugin to the type 

store. When composing an application, it connects all matching slots and plugs, and it 

gives all extensions full permissions. The Security Add-on can be installed on the 

runtime in order to refuse unauthorized plugins, to block illegal composition 
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operations, to isolate untrusted plugins in sandboxes, and to wire interceptors between 

extensions. In order to do so, the Type Store asks the Security Add-on if it is allowed to 

add a plugin; the Composer asks the Security Add-on if it is allowed to connect two 

extensions; if the connection is allowed, the Security Add-on may nevertheless wire an 

interceptor between the extensions in order to restrict the interface of an extension; and 

the Security Add-on may restrict the permission set of an extension when it is created 

(e.g., by denying access to the hard disc or to the network). Finally, the Security Add-on 

can also enforce restrictions on disconnecting and removing extensions. 

The Security Add-on obtains security settings either from a configuration file or from 

attributes that can be attached to extensions, slots and plug, which allows 

manufacturers to specify restrictions directly in the source code of the extensions. 

Custom security scenarios, which are not covered by the configuration file or by 

attributes, can be covered by implementing security libraries. The Security Add-on is 

described in detail in [Wolfinger et al., 2012]. 

Testing Add-on 

Plux allows dynamic reconfiguration of applications by dynamically adding or 

removing components. To test whether a component is dynamically composable, it is 

not sufficient to test it in isolation, but one also has to test it in combination with other 

components and with dynamic reconfiguration. The Testing Add-on allows systematic 

composability tests by permutating all possible ways in which components can be 

connected. It reads test specifications from a configuration file, prepares factories to 

create testbed components, adds testbed components to the type store, uses the 

composer to execute composition operations, and executes tests on different 

composition states. [Löberbauer, 2012; Löberbauer et al., 2010] 

Debugging Add-on 

The Debugging Add-on records the composition process of a program, analyzes the 

composition sequences and composition states, and hints at possible causes of 

composition errors (e.g., when necessary extensions are missing or when extensions 

where plugged in the wrong order). Composition errors can be located with a post 

mortem composition debugger, i.e., by replaying the composition operations and 

searching for the causes of composition errors. 

An additional debugging tool allows developers to evaluate the composition trace, to 

filter composition operations, to split composition traces into parts that contain related 

composition operations, to compare composition traces and to visualize differences 

between them. This tool generates hints for possible error causes using reasoning. 

[Löberbauer, 2012; Lengauer, 2012] 
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6.3 Runtime Libraries 

Runtime libraries support developers with prefabricated implementations for common 

tasks in developing component-based web applications. This section describes the 

Administration Library, which provides support for user management and plugin 

deployment, the Web UI Library, which enables developers to build user interfaces from 

distributed components, and the Layout Library, which supports the developer by 

arranging controls of component-based user interfaces. 

Administration Library 

The Administration Library consists of a set of assemblies that support the 

administration of user accounts and the deployment of user-specific plugins. It 

contains different user store implementations that can be used by the server runtime: 

the XML user store maintains user information in an XML file; the database user store 

can be used to store user information in a database; and the ASP.NET user store 

implements the ASP.NET membership API, which can be used to store users in files or 

in a database, and which can be used for authentication in ASP.NET web applications. 

Furthermore, the Administration Library provides support for deploying plugins to the 

server-side plugin repository. It allows installing server-side plugins by administrators, 

who have access to the server environment, and by users, who can install server-side 

plugins from remote environments. 

Web UI Library 

The Web UI Library allows developers to build distributed user interfaces for web 

applications from web controls such as Buttons, Labels, or Panels. The user interface for 

Plux web applications can also be built from ASP.NET web controls, however 

ASP.NET web controls require to be executed in the AppDomain in which an ASP.NET 

web application was started. Therefore, with ASP.NET controls it is neither possible to 

separate user-specific plugins that implement parts of the user interface in different 

AppDomains, nor is it possible to extend the user interface with distributed 

components. Therefore, the Web UI Library provides an implementation of web 

controls, which are similar to the ASP.NET web controls, but can be executed in 

different AppDomains and can be used in the same way in local components as well as 

in components that are executed on a remote environment. 

Layout Library 

In component-based web applications, which have the goal to be adaptable and 

extensible, the user interface should be adaptable and extensible, too. Therefore, the 

user interface also needs to be built from separate components.  However, building 

user interfaces from separate components, which do not know each other, leads to 

additional problems that need to be solved. In common user interfaces, developers 

arrange user controls either by specifying absolute values for the size and position of a 

control, or by specifying those values relative to other controls, which are known by 
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the developer. As user controls in component-based user interfaces do not know the 

other controls in the current composition, it is not possible to arrange controls with 

static values for their size and position. The Layout Library implements a solution for 

dynamically arranging user controls in component-based user interfaces. For this, UI 

components specify layout information declaratively in their metadata via .NET 

attributes. The layout information comprises generic specifications for the size and the 

location of every control. This is evaluated by the Layout Library to arrange all existing 

controls in a coherent user interface. 
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7 Evaluation 

This chapter evaluates our approach of building plugin-based distributed multi-

user web applications with Plux. For our evaluation, we adapted two existing 

plugin-based desktop applications so that they can be deployed as web 

applications. In this process, we analyzed the degree of component 

prefabrication and component reusability. 

The purpose of component-based software development is to build applications from 

loosely coupled components with well-defined interfaces, which can be implemented 

independently. The goal of this approach is to prefabricate and to reuse components in 

different applications. Furthermore, plugin components enable applications to be 

customizable and extensible with third-party plugins provided by end users. 

The following sections evaluate the degree of component prefabrication and 

component reusability of plugin-based distributed multi-user web applications with 

regard to the component model for the web, which was presented in this thesis. For 

this, we analyzed two case study applications, which originally were implemented 

using the original Plux component model that was introduced in the PhD thesis of 

Wolfinger [Wolfinger, 2010]. Since this component model targets single user desktop 

applications only, both case study applications initially were desktop applications.  

One of our research goals was to increase component reusability when building web 

applications from existing desktop applications. Therefore, for evaluation purposes we 

adapted both case study applications so that they can be used as web applications as 

well. In doing so, we determined the number of components that could be reused for 

the web without any modification, the number of generic web components that were 

already prefabricated, and the number of components that needed to be re-

implemented for the web. 

A further goal was to increase customizability and extensibility for component-based 

web applications. By supporting distributed components, we enabled users to 

customize the architecture of their applications according to their needs. Applications 

now can be deployed as pure web applications, where the whole application is 

deployed and executed on a web server; they can be deployed as rich web applications, 

where all components are installed on a web server, but the components for the user 
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interface are transferred to the client computer and executed there when the 

application is accessed, while the components for the business logic stay on the web 

server; they can be deployed as thin client applications, where only the business logic 

components are installed and executed on a server whereas components for the user 

interface are installed and executed on the client computer; or they can be deployed as 

pure desktop applications, where all components are installed and executed on the 

client computer. Furthermore, the extensibility of web applications was increased, 

since users now can extend them with their individual user-specific components either 

on the server-side or on the client-side. However, it is difficult to determine the degree 

of how much the extensibility of the applications was increased, because existing 

component models do not support user-specific extensions for web applications at all.  

Section 7.1 describes the extensions and the composition architecture of the case study 

applications that were used for evaluation and Section 7.2 presents the degree of 

component prefabrication and reusability that could be achieved when adapting both 

case studies to deploy them as pure web applications, as rich web applications, and as 

thin client applications. 

7.1 Case Studies 

For evaluation purposes, we adapted two existing plugin-based desktop applications 

in order to deploy them as web applications.  The first case study is the Time Recorder 

application for recording working hours, which was already introduced in Chapter 4 

to motivate the approach for building plugin-based distributed multi-user web 

applications. The second case study is a Cross Compiler with an IDE, which was 

originally implemented for a Master's Thesis in the context of the Plux research project 

[Jahn, 2009]. The Cross Compiler case study implements a plugin-based compiler that 

translates source code from one programming language or markup language into 

another language. The input language as well as the output language can be 

customized by using different components for parsing the input and generating the 

output. Both applications consist of multiple extensions, which can be distributed 

across multiple computers and can be extended by end users. 

The following subsections describe the composition architecture of the case study 

applications. We classify extensions into generic extensions and specific extensions. 

Generic extensions can be prefabricated and reused in any application, while specific 

extensions are implemented exclusively for a specific application. Additionally, all 

extensions are assigned to one of the following application layers. The System layer 

consists of extensions that are provided and used by the Plux composition 

infrastructure, the Presentation layer consists of extensions that implement the user 

interface of the application, Application layer extensions implement the business logic of 

an application, and Data layer extensions provide access to the data that is used by an 

application. Besides the classification into generic and specific extensions, the application 

layer of an extension influences its degree of component reusability as well. 
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7.1.1 Time Recorder 

The Time Recorder application provides features for recording and evaluating working 

hours. Figure 7.1 shows its user interface, which is composed from multiple user 

controls that are implemented as independent extensions. It consists of the menu (1), 

the recorder for starting and stopping time records (2), the project recorder for 

assigning time records to different projects (3), the notes control for attaching notes to 

the current time record (4), the status area for displaying status information for the 

current time record (5), and the presence view for displaying time records in a selected 

time range (6). 

 

Figure 7.2 on the next page shows the composition architecture for the frontend of the 

Time Recorder application. The figure contains the extensions in the Presentation layer, 

which implement the user interface shown in Figure 7.1, and it contains the extensions 

in the System layer, which implement the exchangeable discovery mechanism. All 

extensions in the System layer are generic, while the extensions in the Presentation layer 

are separated into generic and specific extensions. The composition architecture for the 

backend is shown in Figure 7.3 on page 151. Those extensions are separated into 

Application layer extensions, which implement the business logic of the application, and 

Figure 7.1: User interface of the Time Recorder application 
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into Data layer extensions, which provide access to the data that is used by the business 

logic extensions. Most backend extensions are specific extensions, which are 

implemented exclusively for the Time Recorder application, but a single extension in the 

Data layer is generic, which can be reused in any application. 

System layer (generic) 

The System layer consists of the generic extensions Discoverer, Filesystem Detector, and 

Assembly Analyzer, which implement the exchangeable discovery mechanism. These 

extensions were described in Section 3.2 and can be reused in any application. 

Presentation layer (generic) 

All generic extensions in the Presentation layer are provided by the Plux composition 

infrastructure. The Workbench extension acts as a host for view extensions, which can 

be opened within the display area of the workbench. For arranging views, the 

Workbench uses a TabContainer extension. Furthermore, the Workbench provides a slot 

for a Menu extension, which is displayed on the top of the display area, as well as a slot 

Figure 7.2: Frontend composition of the Time Recorder application 
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for Action extensions, which are displayed as entries in the menu. The Visualizer is a 

View extension that shows the current composition state of the application and 

provides an interface for modifying the current composition state (see Section 3.3.7). 

Presentation layer (specific) 

The specific extensions in the Presentation layer implement the user interface of the Time 

Recorder view (see Figure 7.1), which is plugged into the Workbench. The Time Recorder 

extension is the host for control extensions, which provide the user interface for the 

various features of the application. The Recorder Control contains buttons for starting, 

pausing, and stopping recording; the Status Container provides an area for displaying 

status information such as duration and start time of the current time record or the 

sum of recorded working hours for the current project; the Project Recorder Control 

provides a list of radio buttons that assign the current time record to a particular 

project; the Notes Control allows the user to enter a note for the current time record; the 

View Container provides a display area within the Time Recorder to show the content of 

internal views; the Presence View shows a list of time records for a certain period of 

time; the Project View shows time record statistics for a selected project; the Export View 

Figure 7.3: Backend composition of Time Recorder application 
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allows users to export time records into a file; and finally the Menu Control provides an 

internal menu that shows entries for actions, which can be plugged in its 

TimeRecorderAction slot. 

Application layer (generic) 

The Application layer consists only of a single generic extension, which is the Shutdown 

Action. It is plugged into the Workbench and it is used to close the application. Since the 

implementation of the extension just invokes the runtime's Shutdown method, but does 

not provide a user interface, it belongs to the Application layer. 

Application Layer (specific) 

Specific extensions in the Application layer are used by specific extensions in the 

Presentation layer. The Recorder is used by the Recorder Control to start and stop 

recording working hours; the Presence Status is displayed by the Status Container and 

uses the Recorder to determine the start time as well as the duration of the current time 

record and it uses the Presence Store of the Data layer to sum up all time records of the 

current day; the Project Recorder is used by the Project Recorder Control to assign time 

records to different projects, it is used by the Notes Control to assign notes to the current 

time record for a project, and it is used by the Project Status to display status 

information for the current project; the Project Status is displayed by the Status 

Container and uses the Project Recorder and the Project Store to sum up the time records 

of the current project; the Presence Data View is used by the Presence View and allows 

selecting, filtering, and sorting time records to be displayed; the Project Data View is 

used by the Project View and works similar to the Presence Data View for project time 

records; the Notes Detail Provider is used by the Project View and provides the notes that 

are assigned to the selected project time record; and finally the MdbConverter as well as 

the CsvConverter are used by the Export View to convert stored data into either a mdb 

file or a csv file. 

Data layer (specific) 

The Data layer contains extensions that allow storing and retrieving data that is used by 

the application. The Presence Store provides access to presence time records; the Project 

Store provides access to project time records; and the Note Store provides access to notes 

for project time records. All the specific stores use the generic store extension Xml Data 

Store, which provides an interface for storing and retrieving arbitrary data. 

Data layer (generic) 

The generic Data layer contains the Xml Data Store extension for writing and reading 

data into and from an XML file. Besides the Xml Data Store, there is also an optional 

Database Data Store, which stores the data into a connected database (not shown). 
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7.1.2 Cross Compiler with IDE 

The Cross Compiler application can be used to translate any programming or markup 

language into any other language. It was developed in the context of the Plux research 

project in order to translate Delphi source code into C# source code. The component-

based architecture of the compiler allows exchanging all its essential parts so that the 

translation of other languages can be supported as well. 

Figure 7.4 shows the graphical user interface of the IDE for the cross compiler, which is 

again implemented with independent extensions. The Menu (1) shows menu entries for 

actions that can be plugged into the extension that implements the menu; the Tool 

Bar (2) allows controlling the compiler, shows the location of the source file and the 

output file, and allows selecting the parser and the code generator that are used for 

compilation; the Source View (3) shows the source code of the input; the AST View (4) 

shows the abstract syntax tree that was generated during parsing the source code; the 

Symbol Table View (5) shows the contents of the symbol table; the Output View (6) shows 

the generated output; and the Error View (7) shows a list of messages, warnings, and 

errors, which were logged during compilation. 

 

The composition architecture of the compiler and its IDE are shown in Figure 7.5 on 

the next page. Since all generic extensions of the System layer and the Presentation layer 

of this application are the same as in the Time Recorder application, they are not shown 

in the figure. 

Figure 7.4: User interface of the IDE for the Cross Compiler application 
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Presentation layer (specific) 

The cross compiler application provides two different user interfaces. The Console 

extension is used by the command shell and allows users to control the Compiler via 

shell commands. The IDE provides a graphical user interface and is implemented as a 

view extension that can be plugged into the Workbench extension (not shown). The IDE 

extension has a slot for the Compiler to be controlled. It is extended by several UI 

extensions, which are displayed within the IDE view (see Figure 7.4). The Menu shows 

menu entries, which can be plugged into its Action slot. The base deployment 

configuration of the application contains extensions for the actions New, Open, Save, 

Figure 7.5: Composition of Cross Compiler case study 
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SaveAs, Exit, Parse, Compile, Generate, Reset, and About (not shown). The Tool Bar allows 

selecting the parser extension as well as selecting the generator extension, which are 

used by the Compiler in order to change source and output language. Furthermore, it 

provides the buttons Parse, which starts the parser, Generate, which starts the code 

generator, and Compile, which starts the parser and the code generator. The Source View 

displays the contents of the opened source file; the Symbol Table View displays the 

contents of the symbol table, which is filled by the compiler during parsing the source; 

the AST View displays the abstract syntax tree (AST), which is also built up during 

parsing the source; the Output View displays the output that is generated by the 

compiler; finally, the Error View displays messages, warnings and errors that occurred 

during compilation. 

Application layer (specific) 

The Application layer consists of extensions that implement the functional part of the 

compiler. The Compiler extension combines the ingredients of a compiler that are 

necessary for translating source code from one language to another. The ingredients 

are implemented as extensions, which are plugged to the Compiler. The Source Buffer 

provides the source code to be translated. The Delphi Parser analyses Delphi source 

code, fills the Symbol Table, and builds up the Abstract Syntax Tree. The Symbol Table 

stores all identifiers of the source code and their meanings. The Abstract Syntax Tree 

models the source code in a tree-like data structure. The C# Code Generator uses the 

Abstract Syntax Tree and the Symbol Table to generate C# code, which is written into the 

Output Buffer. The extensions Compiler, Source Buffer, Delphi Parser, C# Code Generator, 

and Output Buffer use the Logger to log messages, warnings and errors, which are 

displayed by der Error View. Finally the Selection Manager is used by the Source View, 

the Symbol Table View, the AST view, the Output View and the Error View to synchronize 

the selection in those views. This allows the user to select source code in the Source 

View, to see the generated output for the selection in the Output View, and to see the 

internal data of the compiler for the selection in the Symbol Table View and in the AST 

View. 

Data layer (specific) 

The Data layer of our cross compiler consists only of the extension Preferences, which 

stores compiler configurations such as the location of symbol libraries for the symbol 

table. 

7.2 Component Prefabrication and Reusability 

This section evaluates the degree of component prefabrication and reusability that was 

achieved by adapting our case studies from desktop applications to web applications. 

Whether an extension can be prefabricated or reused both in desktop and in web 

applications depends on whether it is generic or specific and to which application layer 
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it belongs. Thus, the following subsections determine the degree of component 

prefabrication and reusability based on the total number of extensions in the different 

application layers for generic and specific extensions. 

Figure 7.6 shows the number of generic and specific extensions in each application 

layer as absolute values and as percentage of the total number of extensions per 

application for both case studies. 

 

For our evaluation, we did not only consider the case of building pure web 

applications, where all extensions are executed on a web server, but we also analyzed 

combinations of desktop and web applications, where the extensions in the application 

layer and in the data layer are executed on the server, but the extensions in the 

presentation layer are executed on the client-side computers. For architectures that 

combine server-side and client-side extensions, we distinguish between thin client 

applications and rich web applications. In thin client applications, the extensions in the 

presentation layer are deployed and executed on the client side, while in rich web 

applications those extensions are deployed on the server, but transferred to the client 

on demand and are executed in a sandbox there. For rich web applications, we used 

the Silverlight technology for implementing user interface extensions. 

7.2.1 Prefabrication 

When building web applications from existing desktop applications, some extensions 

cannot be reused as they are. For example, the discovery mechanism is implemented 

differently for single-user desktop applications and for multi-user web applications. 

Thus, the discovery extensions that are used by desktop applications need to be 

replaced by discovery extensions for the web. Similarly, extensions in the presentation 

layer are implemented differently for desktop and for web applications and need to be 

replaced as well. However, if those extensions are generic, they need not be re-

implemented by the developer, but can be prefabricated and provided by the 

composition infrastructure. Thus, the degree of component prefabrication influences 

the degree of component reusability. The more components are already prefabricated, 

the higher is the degree of component reusability. 

Figure 7.6: Number and percentage of generic and 

specific extensions per application layer 
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Figure 7.7 shows the number of prefabricated extensions and their percentage of the 

total number of extensions of our case study applications. Since all generic extensions 

could be prefabricated, 9 of 31 extensions were prefabricated for the Time Recorder 

application and 8 of 37 extensions were prefabricated for the Cross Compiler 

application. As a result, the average degree of component prefabrication was 25%, 

while 75% of all extensions had to be implemented exclusively for those applications. 

Furthermore, the figure shows that the number of prefabricated extensions in the 

system layer and in the presentation layer is significant higher as for the prefabricated 

extensions in the application layer and in the data layer. 

 

7.2.2 Reusability 

Whether an extension can be reused both in desktop applications and in web 

applications depends on the environment in which an extension should be used 

(i.e., Server, Client, or Sandbox) and on the application layer to which an extension 

belongs. In other words, the architecture of an application influences the degree of 

component reusability. Thus, the degree of component reusability differs depending 

on whether a desktop application is adapted to a pure web application, to a thin client 

application, or to a rich web application. In addition to that, the amount of extensions 

in the various application layers also influences the degree of component reusability. 

Figure 7.8 on the next page shows which extensions can be reused or need to be 

replaced in a certain environment depending on its application layer. The figure 

distinguishes between the environments Server, Client, and Sandbox. Server means that 

an extension is deployed and executed on the server; Client means that an extension is 

deployed and executed on the client; and Sandbox means that the extension is 

implemented as a Silverlight extension, which is deployed on the server, but executed 

in a sandbox on the client. Furthermore, the figure distinguishes between reusing, 

replacing, and potentially replacing an extension. Reusing means that an extension can be 

reused in a particular environment as it is; replacing means that the extension needs to 

be replaced either with a prefabricated extension, or with an extension that just needs 

to be re-compiled for this environment; and potentially replacing means that an 

extension may just needs to be recompiled for a particular environment depending on 

its implementation. Extensions that can be neither reused nor replaced must be re-

Figure 7.7: Number and percentage of prefabricated 

extensions per application layer 
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implemented for using them in the particular environment. Since the reusability of 

extensions was only dependent on the extension's deployment environment, its 

application layer, and whether it was generic or specific, the figure does not 

distinguish between both case studies and it does not distinguish between extensions 

in the same application layer for generic or for specific extensions. 

In our case study the extensions in the system layer implement the discovery 

mechanism. Since the discovery mechanism is implemented differently in every 

environment, those extensions either need to be replaced by generic prefabricated 

discovery extensions for the respective environment, or those extensions need to be re-

implemented for the respective environment if they are specific and implemented for a 

certain application. Since all discovery extensions in our case studies are generic 

extensions, they were provided by the composition infrastructure and it was not 

necessary to re-implement them. For the extensions in all other application layers, it 

depends on the deployment environment, whether they can be reused, whether they 

just need to be replaced, or whether they need to be re-implemented. 

If extensions should be executed on the Server, they can be reused, if they belong to the 

application layer or to the data layer. Extensions in the presentation layer cannot be 

reused, because user interfaces for web applications are implemented differently than 

user interfaces for desktop applications. However, since generic extensions in the 

presentation layer are provided by the composition infrastructure, they just need to be 

replaced, while specific extensions in the presentation layer need to be re-implemented 

for using them in web applications. 

If extensions should be used on the Client, they can be reused without modification in 

all application layers, except in the system layer. As mentioned above, system layer 

extensions need to be replaced or re-implemented. Even though the extensions in the 

presentation layer could be reused without modification, they were slightly adapted 

for performance reasons in our case studies. In the original implementation, the user 

interface was executed in the Plux runtime thread. Since this thread is used for 

distributed communication, communication delays would possibly have led to bad 

responsiveness of the user interface. Thus, we adapted those extensions so that the user 

Figure 7.8: Reusability of generic and specific extensions depending on 

their deployment environment and their application layer 
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interface thread is now different from the runtime thread. However, after the adaption, 

these extensions can now be reused for desktop applications and for thin client 

applications without any further adaption. 

Since Sandbox extensions are implemented with the Silverlight technology and 

Silverlight assemblies are not binary compatible to .NET assemblies, they cannot be 

reused as they are. However, generic extensions can be replaced with extensions 

provided by the composition infrastructure, and extensions in the application layer just 

need to be re-compiled and replaced, but not re-implemented. For extensions in the 

presentation layer it depends on the library that was used for implementing the user 

interface. If the user interface for a desktop application only used library elements that 

also exist in Silverlight, the extensions just need to be re-compiled, otherwise they need 

to be re-implemented. In our case studies, the user interface of the Time Recorder 

application was implemented with the intention to deploy it as a rich web application 

as well. Since it used only library elements that also exist in Silverlight, it was enough 

to re-compile and replace the user interface. However, the Cross Compiler was built 

with library elements that do not exist in Silverlight and thus they had to be re-

implemented. Extensions in the data layer possibly need to be re-compiled as well, if 

they do not use local resources such as the local file system. In the case studies, the data 

layer extensions Xml Data Store as well as Preferences are using local resources and thus 

could not be replaced with re-compiled extensions. However, since it does not make 

sense to execute those data layer extensions in the Sandbox environment they were not 

re-implemented. 

The following subsections show the degree of component reusability, which was 

achieved when adapting the case studies to pure web applications, to thin client 

applications and to rich web applications. 

Pure Web Applications 

In a pure web application every extension is executed on the web server and the 

application is accessed via a browser frontend. Thus, there are only Server extensions, 

but no Client and no Sandbox extensions. Figure 7.9 on the next page shows the degree 

of component reusability that could be achieved when adapting the desktop 

applications of our case studies to pure web applications. 

The Time Recorder application consists of 31 extensions in total. We could reuse 14 

extensions without modification, we replaced 3 generic extensions in the system layer 

and 4 in the presentation layer, and we had to re-implement 10 specific extensions in 

the presentation layer. 

The Cross Compiler application consists of 37 extensions in total. We could reuse 21 

extensions without modification, we replaced 3 generic extensions in the system layer 

and 4 in the presentation layer, and we had to re-implement 9 specific extensions in the 

presentation layer. 
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As a result, 51% of all extensions could be reused, 21% could simply be replaced, and 

28% needed to be re-implemented for the web. We consider it as a proof for the power 

and the location transparency of our plugin platform that only one third of the 

components had to be re-implemented when desktop applications were ported to the 

web. 

Thin Client Applications 

In thin client applications, the extensions that implement the user interface are 

deployed and executed on the Client, while the extensions that implement the business 

logic are deployed and executed on the Server. Figure 7.10 shows the degree of 

component reusability that could be achieved when adapting the desktop applications 

of our case studies to thin client applications. 

 

When adapting the Time Recorder desktop application to a thin client application we 

could reuse 14 extensions in the application and the data layer on the server as well as 

14 extensions in the presentation layer on the client. Only the 3 discovery extensions in 

Figure 7.10: Component reusability for building Thin Client Applications 

Figure 7.9: Component reusability for building pure Web Applications 
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the system layer needed to be replaced with the respective extensions for server-side 

and client-side discovery. 

When adapting the Cross Compiler application we could reuse 21 extensions in the 

application layer and data layer on the server as well as 13 extensions in the 

presentation layer on the client. Similar to the Time Recorder application, only the 3 

discovery extensions had to be replaced. 

As a result, we could reuse 91% of all extensions and could replace 9% with other 

prefabricated extensions. Not a single component had to be re-implemented. 

Rich Web Applications 

In rich web applications, the extensions that implement the user interface are deployed 

on the Server, but are executed on the Client. The extensions that implement the 

business logic are deployed and executed on the Server. Figure 7.11 shows the degree 

of component reusability that could be achieved when adapting the desktop 

applications of our case studies to rich web applications. 

 

When adapting the Time Recorder desktop application to a rich web application, the 

reusability of business logic extensions on the server is the same as for both other 

architectures. Since the implementation of the user interface is done with Silverlight, 

extensions in the presentation layer cannot be reused. However, it was also not 

necessary to re-implement them, because they were implemented in such a way that 

they just had to be re-compiled for the Silverlight technology. 

When adapting the Cross Compiler, all extensions in the application layer and the data 

layer could be reused. The discovery extensions in the system layer and the generic 

extensions in the presentation layer had to be replaced, but the specific extensions in 

the presentation layer had to be re-implemented, because they originally were 

implemented using the Windows Forms technology, which cannot be re-compiled for 

Silverlight. 

Figure 7.11: Component reusability for building Rich Web Applications 
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In total, 51% of all extensions could be reused, 35% had to be replaced and only 13% 

had to be re-implemented. Again, this seems to be a strong demonstration of the power 

and location transparency of our plugin platform. 
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8 Summary 

This chapter summarizes the contributions of this thesis, which consist of 

refinements of the original Plux component model and of contributions that 

enable distribution support, multi-user support, and web support. Furthermore, 

it points at some open issues that could not be resolved yet, and suggests a set of 

topics for further research in order to improve the concepts of the presented 

component model. 

This thesis presents a component model for building plugin-based web applications 

and a component infrastructure that implements the component model. In contrast to 

existing solutions, the presented component model allows users to customize and 

extend their web applications with user-specific extensions. Furthermore, the 

component model supports distribution of components across multiple computers, 

which enables users to extend their web applications with client-side components that 

have access to local resources, such as local hardware, if required. The following 

sections conclude the thesis by summarizing research contributions, by pointing to 

open issues to be resolved, and by suggesting further research. 

8.1 Contributions 

The thesis claims research contributions for assembling web applications from plugins, 

so that every user can have his individual set of components and that components can 

reside on different computers. The thesis is based on the Plux component model of 

Wolfinger, which was described in his PhD thesis [Wolfinger, 2010]. However, it goes 

far beyond Wolfinger's thesis by introducing a number of refinements to the original 

component model and by extending it with new concepts that enable distribution 

support, multi-user support, and web support. The following subsections summarize 

these contributions.  

Component Model Refinements 

We introduced some refinements to the original Plux component model, which 

simplify extension development and lead to less coding effort as well as to less coding 

complexity: 
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 New Meta-object Model. The metadata for extensions can be retrieved via meta-

objects (e.g., Extension, Plug, and Slot). Our new component model defines a 

completely redesigned meta-object model, which simplifies the composition 

API. The most significant modification is that in the original composition API 

developers had to distinguish between type meta-objects and instance meta-

objects. In the new component model, developers only deal with instance meta-

objects, while type meta-objects are used only internally by the composition 

infrastructure. 

 Synchronous Composition Process. Our new component model defines a 

completely redesigned composition process. The original composition process 

was executing composition operations asynchronously, i.e., all composition 

operation were enqueued by the composer and extensions had to wait for 

callbacks to continue work after the operation was performed. The current 

composition process performs composition operations synchronously, i.e., 

when calls to composition operations return, one can be sure that they have 

already been executed. For this, the composition model introduced nested 

composition sequences. The synchronous composition process simplifies 

programmatic composition and leads to a more comprehensible 

implementations of extensions. 

 Lazy Composition / Automatic Garbage Collection. Our new composition process 

activates extensions not until they are accessed for the first time. Since 

extensions only get composed as soon as they are activated, the composition 

process only composes extensions that are in use. Furthermore, the component 

model includes an automatic garbage collection mechanism, which destroys 

extensions, as soon as they are not used anymore. The combination of lazy com-

position and automatic garbage collection keeps the composition state minimal. 

 Enriched Composition State. Our new component model allows tagging 

connections between extensions with an arbitrary number of named labels. In 

this way, the composition state can be enriched with additional information, 

e.g., by marking a contributor that is currently performing a certain task. 

 Additional Composition Events. Our component model defines new composition 

events that notify extensions about upcoming composition operations and 

allow them to cancel them if required, e.g., if some precondition is not fulfilled. 

 Composition Behaviors. Our new component model defines reusable composition 

behaviors, which implement common composition logic patterns and can be 

applied to extensions declaratively. Composition behaviors increase code reuse, 

because programmatic composition is extracted into reusable composition 

libraries that can be applied to different extensions. 
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 Component Customization. Our new component model defines a customization 

model for extensions by which extensions can be enriched with configurable 

settings. Settings for extensions can be retrieved via their meta-objects. 

Component Model Extensions 

The most important contributions of this thesis are the following novel concepts, which 

extend the original component model in order to support building plugin-based 

distributed multi-user web applications: 

 Distribution support. Our extended component model defines a distributed 

discovery mechanism that allows users to install plugins on different 

computers without having to configure the application in a special way. It 

defines a distributed composition process that supports automatic composition 

of extensions that are located on different computers. It defines a distributed 

thread management that simulates a single coherent thread, which is assembled 

from multiple distributed threads that are linked together. Finally, it defines an 

interoperable interaction standard for distributed extensions that supports 

reference identity, data synchronization, and garbage collection for distributed 

objects. 

 Multi-user support. Our extended component model defines a multi-user 

discovery mechanism that allows every user or user group to install their 

specific sets of plugins, which are kept in separate composition states. Thus, 

every user can compose an application independently from other users. 

Furthermore, our multi-user composition state uses separate memory areas for 

user-specific extensions so that errors in users-specific extensions do not affect 

other users. 

 Web support. Our extended component model defines a deployment standard 

that allows users to host Plux web applications on a web server. It defines an 

exchangeable runtime thread that enables the web application to be executed in 

a different runtime thread per round trip. 

8.2 Open Issues 

There are two open issues that could not yet be resolved by this thesis. Both are caused 

by the transparent distribution of extensions across multiple computers. The first open 

issue is about disconnected distributed objects that are still referenced, while the 

second open issue is about complicated UI development for distributed extensions. 

Disconnected Distributed Objects 

In existing solutions, distribution support has to be programmed manually. Usually 

distribution applies to just a few specific software parts, which can be tested very well. 
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Plux, however, allows distributing any extension to other computers. Thus, minor 

programming mistakes may lead to errors that would not have occurred if an 

extension were used locally. One example for such a mistake, which actually occurred 

in practice, is not to unregister an event handler during decomposition. 

As soon as a remote runtime node gets disconnected, all extensions that are living there 

get decomposed. However, if one of the decomposed extensions forgets to unregister 

one of its event handlers for an event of a remote extension, the next occurrence of this 

event will try to call the event handler, which does not exist any longer, so an 

exception will be thrown. Even though the notifier of the Plux composition 

infrastructure, which invokes all event handlers for composition events, can handle 

this situation, the same problem also occurs for events that are raised by extensions. 

Thus, all extensions possibly have to deal with disconnected event handlers. 

Furthermore, a disconnected event handler is just one example for this problem. The 

same problem can happen for every reference to a proxy for a distributed object that is 

kept after a distributed environment was disconnected.  

This error can be avoided, if extensions are implemented in a clean way, so that all 

references to distributed objects get released, as soon as an extension gets decomposed. 

However, there is still a problem when an environment gets disconnected 

unexpectedly, e.g., because of losing the network connection. In this case, references to 

distributed objects cannot be released before the connection breaks. As a result, 

extensions that are distributed across multiple computers may be faced with 

unexpected exceptions caused by connection problems. Even though the Plux runtime 

can deal with unhandled exceptions, extensions that are not aware of this problem may 

get into an invalid state. In this case, the application needs to be restarted. 

The problem of unexpected disconnection of distributed objects also exists in other 

technologies such as remoting, but those technologies have better opportunities to 

handle it, because distribution is implemented only in specific parts of an application. 

Complicated UI Development for Thin Client Applications 

The component model specifies a dedicated runtime thread, which is used for runtime 

operations as well as for communication between extensions. Since extensions can be 

distributed across multiple computers, it is a bad design to execute user interface 

operations in the runtime thread, because distributed communication may lead to 

delays and thus to bad responsiveness of the user interface. This is not a problem for 

web user interfaces, which are displayed in a web browser. It is only a problem for user 

interfaces that are implemented with an UI framework for desktop applications such as 

Windows Forms or WPF (e.g., the user interface of client-side extensions that are 

plugged into a web application). For such extensions, the UI thread should be different 

from the Plux runtime thread. If the user interface is executed in some other thread 

than the Plux runtime thread, extensions need to invoke method calls from the UI 

thread into the Plux runtime thread and the other way around. This has to be done 

asynchronously; otherwise there is no benefit of executing the user interface in a 



Future Work 

165 

different thread than the Plux runtime thread. This makes the implementation of user 

interfaces for distributed client-side extensions more complicated. 

8.3 Future Work 

There are ideas for improving the current component model. Some of the following 

topics are already work in progress. 

Connection Recovery 

The current component model does not define concepts for recovering connections in 

the case of unexpected connection losses. The component model could be extended 

with mechanisms that try to reconnect an unintentionally disconnected runtime node 

in order to avoid errors as described in the Section 8.2. 

Persistence 

In the current implementation of the composition infrastructure, a Plux runtime is 

started at the beginning of a web session and is kept alive until the end of the session. 

However, saving the current state of the runtime after each round trip and restoring it 

for the next round trip would reduce memory consumption on the server and would 

enable the use of server farms. The Plux composition library already implements a 

prototype for saving and restoring the composition state of the runtime, but an 

infrastructure that integrates this library into the server runtime is still missing. 

Interoperability 

The current Plux composition infrastructure is implemented under .NET. However, 

since the concepts of the component model are language independent, the composition 

infrastructure could also be implemented in other languages. This would allow users 

to connect .NET extensions with Java extensions, say. A Master's thesis [Spasov, 2013] 

already ported the base component model for desktop applications to Java. However, a 

port of the extended component model for the web is still missing. 

Distributed Locking 

The distributed interaction standard defines a distributed runtime thread that is 

implemented with multiple threads on different computers that simulate a single 

coherent thread. This works for executing code in a distributed thread, but the current 

implementation does not support a distributed locking mechanism. Therefore locks 

only work locally, but not on distributed components. A distributed locking 

mechanism would enable thread synchronization across computer boundaries. 

Resource Constraints 

Since users are allowed to install user-specific extensions on the web server, the current 

component model maintains separate memory areas for user-specific extensions in 
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order to avoid interference between extensions of different users. However, user-

specific extensions that are executed on the server do not only increase the risk of 

executing error-prone extensions on the server, they also consume CPU and memory 

resources on the server. In order to avoid server congestion, resource constraints could 

limit CPU and memory consumption for user-specific extensions. Thus, users could 

only install a set of user-specific extensions that do not exceed the limit of resource 

consumption, which is permitted for a certain user. If user-specific extensions would 

exceed this limit, they could be automatically decomposed. 

Debugging Support 

In distributed applications, code is executed on different computers. Even though the 

distributed thread management simulates a single coherent thread across multiple 

computers, the code is still executed in different threads and method calls are 

transported from one thread to another via messages. As a result, debugging is 

difficult, because there is no continuous call stack. Additional debugging support for 

distributed threads would be helpful. 

8.4 Conclusion 

This thesis presented a novel approach for building plugin-based distributed multi-

user web applications. It defined a component model that specifies a metadata 

standard that allows adding and removing plugins in a plug-and-play manner, a 

deployment standard that maintains local and remote plugins for individual users, a 

composition standard that connects independent plugin components seamlessly to a 

coherent web application, an interaction standard that enables local and distributed 

communication between plugin components, and a customization standard that 

maintains optional settings for plugins. The concepts that are presented in this thesis 

are validated with a composition infrastructure that implements the specifications in 

the component model as well as with case studies. 

The composition infrastructure provides a platform that assembles user-specific web 

applications from plugins that are deployed locally on a single computer or distributed 

across multiple computers. Implementation transparency for distributed components 

allows developers to implement remotely connected components in the same way as 

locally connected components. This simplifies the implementation of distributed 

applications and allows reusing the same components on different environments. 

Thus, components can be reused to build different architectures for applications, such 

as pure desktop applications, thin client applications, pure web applications, and rich 

web applications. Furthermore, since the presented concepts are language 

independent, the composition infrastructure allows building applications that are 

composed from components that are developed with different technologies, for 

example from .NET components and from Java components. 
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Appendix A: Hosting Plux Web Applications 

This chapter describes how to host a Plux web application within an ASP.NET 

web page by using a web control. It explains the structure of the virtual 

directory for an ASP.NET web application, the location of the various Plux 

assemblies that implement the composition infrastructure, and how to 

customize and extend the composition infrastructure for specific needs. 

The current implementation of the Plux component model is realized with the .NET 

framework [Microsoft, 2012g]. Therefore, Plux web applications are hosted within 

ASP.NET [Microsoft, 2012k] web applications, which can be published, for example, 

with the Microsoft Internet Information Server (IIS) [Microsoft, 2013c]. An ASP.NET 

web application is stored in a virtual directory, which contains web pages, library 

assemblies, and other resources, such as images and configuration files. A Plux web 

application is accessed through a web page in the virtual directory. The web page 

contains a Plux web control, which starts the Plux server runtime and accesses it on 

subsequent web requests. 

An ASP.NET virtual directory contains several predefined directories with special 

meanings. Figure A.1 on the next page shows an example of how these predefined 

directories are used to host a Plux web application in a virtual directory named 

TimeRecorder: 

 The directory App_Data is used for storing data of any kind, e.g., database files 

or XML files. For example, the Plux FileLogger uses this directory as its default 

location for its log files.  

 The directory Bin contains all assemblies that are used by an ASP.NET web 

application. These assemblies can either be precompiled ASP.NET web pages, 

or other assemblies that are referenced by web pages, such as the assembly 

Plux.Web.AspNET.dll, which contains the Plux web control. The Plux web 

control is used in ASP.NET web pages to accesses the Plux server runtime 

when the control is rendered (see Section A.1 below). The Plux.Web.AspNET.dll 

references the assemblies Plux.dll, Plux.Web.dll, and Plux.Web.Server.dll. Plux.dll 

implements the base component model and is used for Plux desktop 

applications and for Plux web applications; Plux.Web.dll implements the main 
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parts of the component model for the web, which are used in both, the server 

runtime and the client runtimes; and Plux.Web.Server.dll implements the 

composition infrastructure that is required for the server runtime. However, the 

Bin directory does not contain contracts, plugins, or user-specific library 

assemblies for Plux applications. These assemblies are stored in the Repository 

directory. 

 The ClientBin directory contains the Silverlight assemblies of the web 

application, which are transferred to the client-side on demand, if a Silverlight 

plugin is composed. Beside the Silverlight assemblies Plux.dll and Plux.Web.dll, 

the ClientBin directory contains the assembly Plux.Web.Client.dll, which 

implements the composition infrastructure for the client runtime of the 

Silverlight environment. 

 The Repository directory is the default directory for contracts, plugins, and 

libraries of Plux web applications. The structure of this directory is described in 

Section 5.2 Deployment Standard on page 100. 

Furthermore, the virtual directory for the TimeRecorder web application contains the 

web page TimeRecorder.aspx with the Plux web control, and file Web.config, which 

contains the configuration of the ASP.NET web application, as well as the 

configuration of the Plux server runtime. The Plux web control and the configuration 

file are described in the following subsections. 

 

A.1 The Plux Web Control 

The Plux server runtime can be created and accessed either programmatically by code, 

or automatically by the Plux web control. This section describes how to include the 

Plux web control in an ASP.NET web page. Listing A.1 shows an ASP.NET web page 

Figure A.1: Structure of the virtual directory for a Plux 

web application hosted with ASP.NET 
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that includes the Plux web control. The web page starts with the directive <%@ Page>, 

which specifies, among other things, the language in which an associated code behind 

file is written and where to find the associated code behind file. 

In order to make the Plux web control known to the ASP.NET page, the assembly 

Plux.Web.AspNET.dll has to be registered with the directive <%@ Register>. This 

directive specifies the assembly that implements the control, the control's namespace, 

and a tag prefix (plux) that is used to qualify the control in the web page. The Plux web 

control is included within an HTML form tag. The name of the control is Application, 

therefore it is included with the tag <plux:Application runat="server"/>, where plux is the 

registered prefix and Application is the class name of the web control. ASP.NET 

requires both tags to specify the attribute runat="server". The web control can be 

included with an empty tag, as it is shown in Listing A.1, or it can contain 

configuration properties to customize the server runtime, e.g., to specify an application 

name or to set the location of the plugin repository. However, the server runtime can 

also be configured by a configuration file for the web application, as it is described in 

the following section. 

When the web page is rendered for the first time, the web control creates the server 

runtime and instructs it to create a runtime node for the current session. Then it 

forwards the web request to the Plux application. The Plux application processes the 

web request and returns the result to the web page, which replaces the web control 

with the result in the rendered web response. 

A.2 Runtime Configuration 

The Plux runtime can be configured with various settings to customize it for the user's 

need. Furthermore, as the Plux runtime is built from exchangeable modules, it can be 

adapted and extended by further modules, where each module can have its individual 

<%@ Page Language="C#" CodeBehind="TimeRecorder.aspx.cs" ... %> 
<%@ Register Assembly="Plux.Web.AspNET" Namespace="Plux.Web" 
    TagPrefix="plux" %> 

<!DOCTYPE ... > 
<html> 
  <head> 
    <title>Time Recorder</title> 
  </head> 
  <body> 
    <form id="form1" runat="server" > 
      <plux:Application runat="server" /> 
    </form> 
  </body> 
</html> 

Listing A.1: Structure of an ASP.NET web page with a Plux web control 
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configurations, too. Configurations for the runtime and its modules can be specified 

programmatically with the runtime initializer or declaratively with a configuration file. 

As the component model is implemented with the .NET framework, the configuration 

for the runtime is specified in a .NET Application Configuration File, which is an XML file 

that is called Web.config. 

Listing A.2 shows an example of a configuration file for the Server Runtime. In order to 

allow Plux configurations to be set and retrieved by the ASP.NET configuration model, 

they need to be declared in the <configSections> element of the configuration file. Thus, 

the configuration element <section> declares a Plux configuration section with its name 

and the type of the configuration section handler, which implements the configuration 

model of Plux. After the Plux configuration section has been declared, it can be used 

below and is enclosed within the <plux> configuration element. 

The Plux configuration section consists of global configuration elements and module 

configuration elements. Module configuration elements are grouped into 

configurations for core modules, for web modules, and for server modules. Each of them 

specifies the type of the module, which is instantiated at start-up. The module type 

must implement the interface of the corresponding runtime module. Furthermore, 

module configuration elements can have sub elements to specify further configurations 

for the module. However, as all configuration elements are optional, module 

configuration elements can be omitted. In this case, the default type and the default 

configuration for the particular runtime module is used. 

Values in the Plux configuration section can contain placeholders, which are enclosed 

within braces, as well as wildcards, which are indicated by asterisks. Placeholders and 

wildcards are replaced by concrete values when the configuration values are retrieved. 

Plux specifies the placeholders {user}, {group}, {application}, and {path}. The placeholder 

{user} is replaced by the name of the user of the current session. The {group} placeholder 

<?xml version="1.0" encoding="utf-8" ?> 
<configuration> 

  <configSections> 
    <section name="plux" type="Plux.Configuration, Plux.Web.Server"/> 
  </configSections> 

  <plux> 
    <application name="TimeRecorder" company="ASE" version="0.1"/> 

    <environmentUri value="plux://timerecorder.jku.at:25400" /> 

    <createAppDomain value="true" /> 

    <startupPaths> 
      <add path="Repository/Base/Server/Plux.Web.Discoverer.dll" /> 
    </startupPaths> 

    <arguments> 
      <add key="imagePath" value="/Resources/Images" /> 
    </arguments> 
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generates a collection of values, where the placeholder is replaced with the name of the 

current user and with all group names to which the user is a member. The {application} 

placeholder is replaced with the name of the application, which is set via the 

Application configuration element (see below). Finally, the {path} placeholder is replaced 

with the path element of the runtime's environment Uri (see below). The path of an Uri 

is the part between the authority and the query. For example the path of the Uri 

plux://localhost:25400/TimeRecorder/Images?fullscreen=true is /TimeRecorder/Images. The 

example in Listing A.2 uses the placeholders {user} and {group}. 

Wildcards are used in configuration values that specify a path. A single asterisk at the 

end of a path is replaced with a collection of paths containing all sub elements of the 

path. The double asterisk wildcard is replaced with a collection of paths that contains 

all sub elements of the path recursively. The example in Listing A.2 uses wildcards for 

    <coreModules> 
      <dispatcher type="Plux.Web.Dispatcher, Plux.Web" /> 
      <loader> 
        <add path="Repository/{group}/Server/**" /> 
      </loader> 
      <logger> 
        <add type="Plux.ConsoleLogger, Plux" verbosity="Normal"/> 
        <add type="Plux.FileLogger, Plux" verbosity="Diagnostic" 
             path="App_Data/Logs/{user}.log" /> 
      </logger> 
    </coreModules> 

    <webModules> 
      <channel type="Plux.Web.TcpChannel" timeout="999" /> 
      <serializer> 
        <formatters> 
          <add type="System.Collections.Generic.List<>, mscorlib.dll" 
               formatter="Plux.Web.ListFormatter, Plux.Web"/> 
          ... 
        <formatters/> 
      </serializer> 
    </webModules> 

    <serverModules> 
      <userStore type="Plux.Web.ConfigUserStore, Plux.Web"> 
        <add name="base" /> 
        <add name="ssw" parents="base" /> 
        <add name="mj" parents="ssw, base" /> 
      </userStore> 
    </serverModules> 

    <addons> 
      <add type="..." /> 
    </addons> 

  </plux> 
</configuration> 

Listing A.2: Structure of the configuration file Web.config 
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the loader paths, which are the paths to the directories from where assemblies can be 

loaded. 

The following sub sections describe the configuration elements, which are shown in 

Listing A.2. Since many module configuration elements do not have further 

configuration options, they are omitted in the example. 

Application 

The <application> element specifies the application name, the company of the 

manufacturer, and the version of the application. The application information can be 

used to display it in the user interface. Furthermore, it is used in the connection string 

that is generated for connecting remote runtime nodes. Thus, multiple Plux web 

applications can be hosted within a single ASP.NET web page. 

Environment Uri 

The <environmentUri> element specifies an Uri that is used to connect remote runtime 

nodes to the server runtime. The listener of the server runtime accepts connections on 

the address of the environment Uri. 

Create AppDomain 

The <createAppDomain> element specifies whether the runtime should create separate 

AppDomains for user-specific plugins of different users. If the value is set to false, all 

plugins get loaded into the same AppDomain. 

Startup Path 

The <startupPath> element specifies the paths to the directories or files which should be 

initially discovered and composed at start-up time. In Listing A.2 the plugin 

Plux.Web.Server.Discoverer.dll is the plugin to be composed initially. As soon as this 

plugin is plugged to the Plux core, it discovers the other plugins for the current user. 

Arguments 

The <arguments> element specifies a collection of key value pairs, which can be 

retrieved by all extensions of the web application. It can be used, for example, to 

specify a path to a common resource. 

Dispatcher 

The <dispatcher> element specifies the type of the dispatcher module that should be 

instantiated for the runtime. This configuration element is empty, because the 

dispatcher has no further configurations. As the Plux.Web.Dispatcher is the default 

dispatcher type for each web runtime, this element could be omitted. 
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Loader 

The <loader> element specifies the locations from which assemblies can be loaded. The 

example shows the path Repository/{group}/Server/**. When this value is retrieved, the 

{group} placeholder is replaced with the name of the current user and with all group 

names of the user, e.g., if the user Markus is the only member of the group Base, the 

path is resolved to the paths Repository/Markus/Server/** and Repository/Base/Server/**. 

The wildcard at the end of the path specifies that the assemblies in all recursive sub 

directories can be loaded, too. Thus, the assemblies in the Server directory can be 

organized into sub directories, for example into the directories Contracts, Plugins, and 

Libraries. As there is no type specified in the <loader> element, the default loader is 

used. 

Logger 

The <logger> element specifies which logger should be used by the runtime. This 

element allows registering multiple loggers at the same time. For this, multiple logger 

types can be set by sub configuration elements. The configuration file of the example 

above specifies two loggers: the ConsoleLogger, which writes its log messages to a 

console window, and the FileLogger, which writes its log messages into a log file. Each 

logger can have a verbosity level that specifies the detail level for the messages to be 

logged. Furthermore, some loggers, such as the FileLogger, specify a path that is used as 

a target location for the log messages. The FileLogger in the example uses a separate log 

file per user, which is specified by the {user} placeholder. 

Channel 

The <channel> element specifies which channel type is supported by the runtime to 

communicate with remote runtime nodes. Similar to the configuration for the logger, 

the <channel> element can specify multiple supported channels. All supported channels 

are provided to remote environments when a connection is established. Remote 

environments can thus choose the channel type for communication. The timeout 

attribute specifies the amount of time the channel will wait until it raises an exception. 

Serializer 

The <serializer> element specifies an optional serializer type as well as the formatters 

that should be used for object serialization. Since the type of an object defines the 

formatter to be used, formatters are registered with the object type as their key, and the 

formatter type as their value. All registered formatters need to be available on each 

connected runtime node.  

User Store 

The <userStore> element specifies the type of the user store to be used. The 

Plux.Web.ConfigUserStore is a simple user store that can be used during application 
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development. It allows specifying users and their groups directly in the configuration 

file just by adding their names and their parents as sub configuration elements. 

Add-ons 

The <addons> element is used to register runtime add-ons that should be included by 

the runtime. Sub elements specify the type of the add-on, which gets instantiated at 

start-up time and which connects itself to the hooks of runtime modules when it gets 

initialized. 
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Appendix B: Runtime Procedures 

The component model specifies operations and processes, the implementations of 

which are not trivial. This appendix provides a number of sequence diagrams 

that describe runtime procedures, which implement the specified operations and 

processes. 

B.1 Runtime Lifetime 

The lifetime of the runtime comprises three phases: Startup, Run, and Shutdown. Each 

phase differs between the server runtime and the client runtime. The Startup phase and 

the Shutdown phase are described in an individual sequence diagram for both, the 

server runtime and the client runtime. The Run phase is described in a single sequence 

diagram, but has a parameter to differ the behavior between the server runtime and the 

client runtime. 

B.1.1 Startup 

The Plux Runtime is created and configured by an Initializer, which reads the 

configurations from the runtime settings file (see Section A.2 Runtime Configuration). 

First the initializer creates the runtime with its runtime modules (see 

Section 6.1 Composition Infrastructure). When the runtime is created, its runtime state 

is Created, its dispatcher is Released, and the coordinator does not have the Token and it 

is Idle. The state Idle indicates that the runtime thread is currently not running, i.e., the 

dispatcher either is released, or the runtime thread is waiting for a new dispatcher 

operation to be executed. Now the runtime can be initialized and started. 

Server Runtime 

The server runtime is started via the Server Initializer. Its Start method calls the 

coordinators Init method with the token as an argument. In Init, the coordinator 

acquires the dispatcher, sets the token, and registers the dispatcher event handlers 

Acquiring, Acquired, OpEnqueuing, OpEnqueued, OpFinished, Releasing, and Released. 

These event handlers are used for thread management and communication 

coordination; their implementation is described in the following sections below. As Init 

acquires the dispatcher, it returns in the runtime thread 1.0. Thus, the runtime thread 



Appendix B: Runtime Procedures 

176 

now is executing and the coordinator is Not Idle. After initializing the coordinator, it is 

ready for thread management and for coordinating the communication with connected 

environments. 

Next, the initializer asynchronously invokes the first dispatcher operation to be 

executed when the dispatcher is started, which is the Start method of the runtime. As 

the dispatcher is Acquired and as the coordinator has the Token and is Not Idle, the 

OpEnqueued event handler has nothing to do in this case (see Section B.2.3 below). 

Now the initializer calls the coordinator's Run method with Not Wait as an argument, 

which indicates that the Run method should return after all dispatcher operations are 

finished. The coordinator's Run method (see Section B.1.2 below) starts the dispatcher 

by calling the dispatcher's Run method, again with Not Wait as an argument. The 

dispatcher executes the enqueued dispatcher operation Start, which performs 

bootstrap discovery and the initial composition of the Plux application. After starting 

the runtime, its runtime state is Running. As soon as the dispatcher's Run method 

returns, the coordinator's Run method returns too, and the runtime is started. 

Figure B.1: Starting the server runtime 
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As the server runtime does not block the runtime thread, but acquires the dispatcher 

on demand when it needs to execute code in the runtime thread, the initializer finally 

releases the dispatcher. When the initializer's Start method returns, the runtime is 

Running, the dispatcher is Released, and the coordinator has the Token and is Idle. 

Client Runtime 

The client runtime is started via the Client Initializer. The Client Initializer's Start method 

starts a new thread, which is used as runtime thread for the whole runtime lifetime. 

After the initializer's Run method is started in the new thread, the Start method waits 

until the client runtime is connected. Run now calls the coordinator's Connect method, 

which connects the runtime to the server runtime. Additionally, Connect initializes the 

Figure B.2: Starting the client runtime 
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coordinator. It registers the event handlers, Acquiring, Acquired, OpEnqueuing, 

OpEnqueued, OpFinished, Releasing, and Released, requests the token, and acquires the 

dispatcher. Connect returns in the runtime thread 1.0; the dispatcher is Acquired, and 

the coordinator has the Token and is Not Idle. 

As soon as the runtime is connected, the initializer resumes its waiting Start method 

and calls the coordinators Run method with Wait as an argument, which indicates that 

the coordinator should block the runtime thread, when it is idle. The coordinator's Run 

method checks whether the dispatcher has any enqueued dispatcher operations. If not, 

it blocks the runtime thread and sets its state to Idle. Otherwise, it would call the 

dispatcher's Run method to execute the enqueued operations. 

After the Client Initializer's Start method is resumed, it synchronously invokes the 

runtime's Start method, i.e., the dispatcher's Invoke method returns after executing Start 

is finished. When the coordinator receives the OpEnqueued event, it resumes the 

runtime thread and sets its state to Not Idle, if it was Idle. The runtime thread continues 

and calls the dispatcher's Run method with Not Wait as an argument. The dispatcher 

executes the runtime's Start method, which bootstrap discovers the client-side plugins 

and plugs them to the connected server-side application. After that, the client runtime 

is Running, the dispatcher's Run method returns to the coordinator, and the Invoke 

method returns to the initializer. The coordinator again blocks the runtime thread, 

until a new dispatcher operation is enqueued. The initializer now returns the Start 

method and the runtime is started. 

B.1.2 Run 

The coordinator's Run method implements a main part of the coordinator's thread 

management. It starts the dispatcher, executes enqueued dispatcher operation, and 

passes the token to connected runtime nodes, if they need them to continue executing 

in the runtime thread there. Its parameter Wait defines whether the method should 

return after the dispatcher's operation queue is empty, or if it should block the runtime 

thread until a new dispatcher operation is enqueued. Run always must be called within 

the runtime thread 1.0. Thus, at the beginning the dispatcher must be Acquired, the 

coordinator needs to have the Token and it is Not Idle. 

If Run should not wait after the dispatcher is finished, it adds the current environment 

id to the token terminus. The token terminus is a list of environments to which the 

token is sent, as soon as the runtime thread is idle. This is necessary for all 

environments that do not block the runtime thread, but release the dispatcher when the 

runtime thread is idle. Otherwise, if the last dispatcher operation is executed on a 

remote environment, this environment would keep the token until it receives a new 

dispatcher operation from another environment. As the current environment needs the 

token to continue executing the runtime thread in order to be able to release the 

dispatcher, it needs the token after the dispatcher idle. 
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As Run needs to check the state of the dispatcher, which is changed from different 

threads, the coordinator uses a Lock object, which is set and released when the 

dispatcher state is retrieved and when the dispatcher state is modified. Run enters a 

loop, if either the dispatchers operation queue is not empty, or Run is waiting for new 

dispatcher operations if the dispatcher is idle, and the runtime state is not Terminated. 

The body of the loop behaves different whether the operation queue is empty, or not. 

If the operation queue is not empty, the coordinator checks whether the next 

dispatcher operation was enqueued from the local environment with the id E, or from 

a remote environment. If it is a local dispatcher operation, the coordinator starts the 

dispatcher by calling the dispatcher's Run method. If it is a remote operation, it does 

not start the local dispatcher, but sends to token to the remote environment. This 

continues executing the runtime thread there and thus the remote dispatcher operation 

gets executed on the remote environment. After sending the token, the current 

environment does not have the token anymore and blocks the runtime thread until it 
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receives the token again. This will happen because either a further dispatcher operation 

needs to be executed in the local environment, or because all dispatcher operations are 

finished and the token terminus was set to the local environment. 

If the operation queue is empty (at the beginning of the loop), then it is guaranteed that 

Run was called with Wait as an argument and the runtime state is Running. Otherwise, 

the loop would not have been entered. In this case, the runtime thread is Idle and thus 

checks whether the token terminus is set to any environment. 

If no token terminus is set, the coordinator blocks the runtime thread until a new 

dispatcher operation is enqueued. This can be done from another local thread, or from 

a remote environment with the Invoke communication operation (see Section 5.4.3). 

When the coordinator handles the OpEnqueued event, it resumes the runtime thread, if 

Figure B.3: Running the coordinator 
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the dispatcher is Acquired, and the coordinator has the Token and it is Idle (see 

Section B.2.3 below). Afterwards the loop continues at the beginning and starts 

executing the enqueued operation. 

If the token terminus is set to a remote environment, the coordinator sends the token to 

the according environment and blocks the runtime thread, because it does not have the 

token anymore. As soon as the token is replied to the current environment, e.g., 

because a local thread enqueued a dispatcher operation, the coordinator resumes the 

local runtime thread and continues execution. 

When Run exits its loop, because the dispatcher's operation queue is empty and Run is 

not waiting, Run removes the token terminus from the token and returns to its caller. 

B.1.3 Shutdown 

The Shutdown phase decomposes the application and disconnects runtime nodes. The 

following subsections describe the Shutdown phase for the server runtime and the client 

runtime. 

Server Runtime 

Shutdown on the server runtime shuts down all client runtimes too. The runtime 

method Shutdown first acquires the dispatcher and asynchronously enqueues the 

dispatcher operation ShutdownClients. Afterwards, it calls the coordinator's Run 
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method, which starts the dispatcher. Thus, the dispatcher executes the coordinator's 

method ShutdownClients, which iterates over all connected environments and sends a 

Call operation with the runtime's Shutdown method as an argument to all of them. This 

causes that all clients decompose their extensions, remove all their plugins, and finally 

disconnect themselves (see Shutdown Client Runtime below). When the dispatcher has 

finished all dispatcher operations, all clients are terminated and disconnected. Now the 

server runtime decomposes all its extensions, removes its plugins, and stets its runtime 

state to Terminated. Finally Shutdown releases the dispatcher and returns to its caller. 

Client Runtime 

Shutdown on the client runtime decomposes and removes all client-side plugins and 

disconnects the runtime node from all its connected environments. The runtime's 

Shutdown method is either called by the server, if the server runtime is terminating, or 

it is enqueued as dispatcher operation on the client-side, as it is shown in the figure 

below. 

During executing Shutdown, the runtime decomposes and removes all client-side 

plugins, sets its runtime status to Terminated and asynchronously invokes the 

coordinator's Disconnect method. Shutdown does not call Disconnect immediately, 

because at the time when Shutdown is executed, some client-side extensions may 

already have enqueued some dispatcher operation before Shutdown was called, or 

some extensions may enqueue a dispatcher operation during their termination. As 

soon as the runtime state is Terminated, client-side code is not allowed anymore to 

enqueue new dispatcher operations (see Section B.2.3 below). Thus, Disconnect is the 

last dispatcher operation that is executed on the Client environment. 

The Disconnect method iterates over all connected environments and sends the 

Disconnect operation to them. The Server is the last environment to which the Disconnect 

operation is sent. The last Disconnect operation instructs the Server via an argument, to 

keep the token even though the Reply message is sent within the runtime thread. After 

Figure B.4: Shutting down the server runtime 
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every runtime node is disconnected, the coordinator does not have the token anymore 

and removes all remaining dispatcher operations from the dispatcher queue by calling 

the dispatcher's Clear method. Before that, there may are some remote dispatcher 

operations in the queue, which still will be executed, because the token was passed to 

the Server environment. After the dispatcher queue is empty, the dispatcher's Run 

method returns to the coordinator. As the runtime state now is Terminated, the 

coordinator's Run method returns too, by which finally the runtime thread terminates. 

B.2 Dispatcher Operations 

The dispatcher is used to invoke method calls from any thread in the runtime thread. 

In order that the coordinator can coordinate the distributed runtime thread it needs to 

handle certain of dispatcher events, which are raised when the dispatcher gets 

Figure B.5: Shutting down the client runtime 
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acquired and released, or when dispatcher operations get enqueued. The following 

subsections describe the implementations of these event handlers. 

B.2.1 Acquire 

Acquire is used to set the executing thread to the dispatcher thread, i.e., to the runtime 

thread. Acquire raises an Acquiring event just before the dispatcher changes its state to 

Acquired and an Acquired event just after it has changed its state. As the coordinator 

checks in some methods whether the dispatcher currently is Acquired or not, the 

coordinator requests the Lock object in the Acquiring event handler in order that the 

dispatcher's Acquired state cannot be changed while the coordinator is performing any 

other operation in which it currently holds the Lock object. 

As soon as the dispatcher is Acquired, the runtime thread is not idle anymore and thus 

the coordinator changes its state to Not Idle. Since the coordinator needs the token to be 

Figure B.6: Acquiring the dispatcher 
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allowed to execute code in the runtime thread, the coordinator checks whether the 

local environment currently has the token. If not, the coordinator requests the token by 

sending the GetToken operation to its connected environments and waits until it 

receives the token. Every time before the coordinator is waiting, it releases its Lock 

object in order that other operations in other threads can be executed while the current 

thread is waiting. 

When the coordinator receives the token, it again requests its Lock object and resumes 

the waiting runtime thread as the local environment now has the token. Finally the 

coordinator releases the Lock object and the local environment can continue execution 

in the runtime thread. 

B.2.2 Release 

Release is used to unset the current thread as dispatcher thread, i.e., as runtime thread. 

The dispatcher gets released when the runtime thread is idle, but the runtime thread 

should not be blocked. Release only can be called in the runtime thread. Since Release is 

only allowed to be called in the runtime thread, it is guaranteed that the coordinator 

currently has the token and the state of the coordinator is Not Idle. 

The event handler Releasing requests the Lock object so that the dispatcher's Acquired 

state does not change, while other threads check the state of the dispatcher. After the 

dispatcher is released, it calls the Released event handler, which sets the state of the 

coordinator to Idle and checks whether dispatcher's operation queue is empty. 
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If the dispatcher's operation queue is empty, the coordinator checks whether a token 

terminus is set. If so, it sends the token to the environment that is set as token terminus.  

If the dispatcher's operation queue is not empty, then the remaining dispatcher 

operations need to be executed. Thus, the coordinator calls AcquireAndRun, which uses 

another thread to acquire the dispatcher, call the coordinator's Run method, and 

release the dispatcher afterwards (see AcquireAndRun below). 

Finally, the Released event handler releases the coordinator's Lock object. 

AcquireAndRun 

AcqurieAndRun acquires the dispatcher, calls the coordinator's Run method with 

NotWait as an argument, and releases the dispatcher again. This method is used when 

the dispatcher gets released, while there are still dispatcher operations in the operation 

queue. AcquireAndRun also is used when a dispatcher operation gets enqueued, while 

the dispatcher is released, but the coordinator has the token (see Section B.2.3 below). 

Figure B.7: Releasing the dispatcher 

Figure B.8: Acquire and run the dispatcher to empty the operation queue 
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B.2.3 Invoke and BeginInvoke 

Invoke and BeginInvoke are used to enqueue an operation in the dispatcher's operation 

queue in order to start the execution of a method from any thread in the dispatcher 

thread. The difference between Invoke and BeginInvoke is that Invoke does not return 

until the operation is executed, while BeginInvoke returns just after the operation was 

enqueued. The following figures only show the BeginInvoke method to describe the 

event handlers for the different dispatcher events. However, the dispatcher events for 

Invoke are the same. As soon as a dispatcher operation is enqueued in any thread, the 

dispatcher raises the OpEnqueuing event just before it enqueues the operation and the 

coordinator requests its Lock object, because the state of the dispatcher is about to be 

changed. 

Figure B.9: Enqueuing a dispatcher operation 



Appendix B: Runtime Procedures 

188 

An operation only can be enqueued, if the runtime state is not Terminated. If the 

runtime already is Terminated, the OpEnqueuing event handler throws an exception (see 

subsection below). 

When the dispatcher operation is enqueued, the coordinator handles OpEnqueued 

event, which behaves different depending on the current state of the dispatcher and 

the state of the coordinator. Since there are many different cases for the OpEnqueued 

event handler, the different cases are described in the subsections below. At the end of 

OpEnqueued, the coordinator releases the Lock object. 

After the execution of the operation is finished, the dispatcher raises the OpFinished 

event. The event handler again requests the Lock object and checks whether the next 

dispatcher operation was enqueued from a remote environment. If so, it sends the 

token to this environment to continue executing there and waits until the local 

environment receives the token again. Before the coordinator calls Wait, it releases the 

Lock object. As soon as the token is received again, the Lock object is requested and the 

runtime thread continues executing. At the end of OpFinished, the coordinator releases 

its Lock object. 

Invoke and BeginInvoke (Terminated) 

It is not allowed to enqueue new dispatcher operations using Invoke or BeginInvoke if 

the runtime state is Terminated. In this case, the OpEnqueuing event handler throws an 

exception before the dispatcher enqueues the operation in its operation queue. 

 

 

OpEnqueued (¬Token) 

When a dispatcher operation was enqueued while the coordinator does not have the 

token, the operation queue of the local dispatcher does not have a valid state. Thus, the 

operation needs to be sent to the environment that has the token. For this, the event 

handler uses the Invoke communication operation (see Section 5.4.3) with the 

dispatcher operation as an argument. 

Figure B.10: OpEnqueuing event handler (Terminated) 
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OpEnqueued (Token ˄ ¬Idle) 

When a dispatcher operation was enqueued while the coordinator has the token and its 

state is Not Idle, the OpEnqueued event handler has nothing to do. 

 

 

OpEnqueued (Token ˄ Idle ˄ Acquired) 

When a dispatcher operation was enqueued while the coordinator has the token, its 

state is Idle, and the dispatcher is Acquired, it is guaranteed that the runtime thread 

currently is waiting. In this case, the coordinator resumes the runtime thread and sets 

its state to Not Idle. 

Figure B.11: OpEnqueued event handler (¬Token) 

Figure B.12: OpEnqueued event handler (Token ˄ ¬Idle) 

Figure B.13: OpEnqueued event handler (Token ˄ Idle ˄ Acquired) 
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OpEnqueued (Token ˄ Idle ˄ Released) 

When a dispatcher operation was enqueued while the coordinator has the token, its 

state is Idle, and the dispatcher is Released, the coordinator checks whether the 

operation was enqueued from the local environment, or from a remote environment 

via the Invoke communication operation. If it is a local dispatcher operation, the 

coordinator calls AcquireAndRun (see Section B.2.2) to start the dispatcher. If it is a 

remote dispatcher operation, the coordinator sends the token to the remote 

environment to continue execution of the dispatcher operation there. 

 

 
 

 

Figure B.14: OpEnqueued event handler (Token ˄ Idle ˄ Released) 
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