

Faculty of Engineering
and Natural Sciences

Plugin-based Distributed Multi-user

Web Applications with Plux

DISSERTATION

submitted in partial fulfillment of the requirements

for the academic degree

Doktor der Technischen Wissenschaften

Submitted by

 DI Markus Jahn

At the

 Institute for Systemsoftware

Accepted on the recommendation of

 O. Univ.-Prof. Dr. Dr. h.c. Hanspeter Mössenböck

 Doc. RNDr. Tomáš Bureš, Ph.D.

Co-advisor

 Dr. Reinhard Wolfinger

Linz, July 2014

Sworn Declaration

I hereby declare under oath that the submitted doctoral dissertation has been written

solely by me without any outside assistance, information other than provided sources

or aids have not been used and those used have been fully documented.

The dissertation here present is identical to the electronically transmitted text

document.

Linz, July 2014 Markus Jahn

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne

fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht

benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich

gemacht habe.

Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdokument

identisch.

Linz, July 2014 Markus Jahn

i

Abstract

Despite the fact that off-the-shelf software applications tend to become more and more

feature-rich, they are still often felt to be incomplete, because it will hardly ever be

possible to hit all requirements of a user out of the box, regardless of how big and

complex an application is. For desktop applications, plugin frameworks are a solution

for this problem, which allows developers to build a thin layer of basic functionality

that can be extended by plugin components and thus tailored to the needs of

individual users. For web applications on the other hand, existing plugin frameworks

are not suitable to enable users to install their user-specific plugins. However, as web

applications increasingly supersede desktop applications, web applications also

become feature-rich and therefore should also be extensible and customizable in order

to tailor it to the needs of individual users.

A number of web platforms allow developers to componentize web applications.

However, as web applications are executed on a web server, but not on each client-side

computer individually, in existing solutions only developers can benefit from this

modularity, whereas users cannot adapt web applications with components. Moreover,

existing solutions only allow changing the set of components for a web application, but

they do not make web applications user-customizable, because all users are using the

same set of server-side components. Developers can make their programs somewhat

user-customizable, e.g., by allowing the users to adjust the user interface or to disable

specific features.

This thesis presents Plux for Web, a component model and a component infrastructure

for building plugin-based web applications that are customizable and extensible with

individual components per user and that can be distributed among multiple

computers. Thus, user-specific plugins can either be installed on the web server, or

they can be installed on the users’ client-side computers.

The component model defines a metadata standard that allows adding and removing

plugins in a plug-and-play manner, a deployment standard that maintains local and

remote plugins for individual users, a composition standard that connects independent

plugin components seamlessly to a coherent web application, an interaction standard

that enables local and distributed communication between plugin components, and a

customization standard that maintains optional settings for plugins. The component

infrastructure implements the component model, and thus provides a platform that

can assemble plugin-based distributed user-specific web applications.

ii

Kurzfassung

Obwohl Standardsoftware immer mehr Funktionalität bietet, vermissen Anwender

trotzdem oft Funktionen für ihre ganz individuellen Anforderungen. Es ist nahezu

unmöglich, dass Standardsoftware in ihrem Auslieferungszustand alle Anforderungen

unterschiedlicher Anwender erfüllen. Für Desktopanwendungen bieten Plug-in-

Frameworks eine Lösung für dieses Problem. Diese erlauben Softwareentwicklern

kompakte Kernanwendungen mit vielen Grundfunktionen zu entwickeln, die später

von den Anwendern durch individuelle Plug-ins erweitert werden können. Für

Webanwendungen bieten existierende Plug-in-Frameworks allerdings keine Lösung,

die es Anwendern ermöglicht, ihre individuellen Plug-ins zu installieren. Da

Webanwendungen an Bedeutung gewonnen haben, sollten auch sie individuell

erweitert werden können, um sie an unterschiedliche Anforderungen anpassen zu

können.

Einige Webplattformen unterstützen Softwareentwickler bei der Erstellung von

komponentenbasierten Webanwendungen. Da Webanwendungen allerdings auf einem

Webserver ausgeführt werden und nicht auf den jeweiligen Computern der Anwen-

der, können nur Softwareentwickler oder Systemadministratoren die Modularität einer

solchen komponentenbasierten Webanwendung nutzen. Anwender können solche

Webanwendungen nicht mit ihren eigenen Komponenten anpassen. Außerdem

ermöglichen existierende Techniken nur das Austauschen von Komponenten für alle

Benutzer einer Webanwendung, nicht aber individuell für verschiedene Anwender.

Üblicherweise können Softwareentwickler Webanwendungen nur für Anwender

anpassbar machen, indem sie erlauben das Aussehen der Benutzeroberfläche zu

verändern oder verschiedene Funktionen ein- und auszuschalten.

Diese Dissertation präsentiert das Komponentenmodell Plux für Webanwendungen

und eine Kompositionsinfrastruktur, die dieses Komponentenmodell implementiert.

Plux ermöglicht Anwendern ihre Webanwendungen mit individuellen Plug-ins

anzupassen und zu erweitern. Dabei können Komponenten verteilt auf

unterschiedlichen Computern ausgeführt werden, wodurch Plug-ins entweder am

Webserver oder auf den Anwender-Computern installiert werden können.

Das Komponentenmodell spezifiziert: einen Metadaten-Standard, der es erlaubt Plug-

ins per Plug-and-play zu einer Webanwendung hinzuzufügen oder zu entfernen; einen

Deployment-Standard, der lokale und verteilte Plug-ins für verschiedene Anwender

individuell verwaltet; einen Kompositions-Standard, der voneinander unabhängige

Plug-ins nahtlos zu einer einheitlichen Webanwendung verbindet; einen Interaktions-

Standard, der lokale und verteilte Kommunikation zwischen Plug-ins ermöglicht; und

einen Konfigurations-Standard zur Verwaltung von optionalen Konfigurationsdaten

für Plug-ins. Die Kompositionsinfrastruktur implementiert das Komponentenmodell

und bietet eine Plattform zur Entwicklung von plug-in-basierten, verteilten und

mehrbenutzerfähigen Webanwendungen.

iii

 Table of Contents

1 Introduction .. 1

1.1 Research Context .. 2

1.2 Problem Statement ... 3

1.3 Research Contributions ... 4

1.4 Project History .. 5

1.5 Structure of the Thesis ... 6

2 State of the Art .. 9

2.1 Historical Overview ... 10

2.1.1 Component Technologies.. 10

2.1.2 Distribution Technologies ... 13

2.1.3 Web Technologies .. 15

2.2 Terminology .. 17

2.2.1 Component Terminology .. 17

2.2.2 Distribution Terminology ... 20

2.2.3 Web Terminology ... 23

2.3 Evaluation of Existing Technologies ... 24

2.3.1 Relevant Capabilities ... 24

2.3.2 Capabilities of Existing Technologies .. 29

2.3.3 Deficiencies of Existing Technologies ... 37

3 The Plux Component Model .. 39

3.1 Metadata Standard ... 40

3.2 Deployment Standard.. 43

3.3 Composition Standard ... 45

3.3.1 Composition State .. 45

3.3.2 Composition Operations ... 48

3.3.3 Composition Events ... 51

3.3.4 Automatic Composition .. 54

3.3.5 Programmatic Composition .. 63

Table of Contents

iv

3.3.6 Behavior-guided Composition ... 66

3.3.7 User-guided composition .. 80

3.4 Interaction Standard ... 83

3.4.1 Thread Management .. 83

3.4.2 Exception Handling.. 83

3.5 Customization Standard .. 84

4 Plugin-based Distributed Multi-user Web Applications .. 87

4.1 Server-side Extensions ... 90

4.2 Client-side Extensions .. 91

4.3 Sandbox Extensions .. 93

4.4 Concluding Example .. 94

5 The Extended Plux Component Model for the Web ... 97

5.1 Metadata Standard ... 99

5.2 Deployment Standard .. 100

5.2.1 User-specific Repositories ... 100

5.2.2 Hierarchical Discovery .. 101

5.3 Composition Standard ... 103

5.3.1 Composition State .. 103

5.3.2 Composition Process .. 108

5.4 Interaction Standard ... 111

5.4.1 Thread Management .. 113

5.4.2 Connection Establishment ... 117

5.4.3 Communication Operations .. 120

5.4.4 Object Transmission Mode .. 124

5.4.5 Object Transmission Format ... 126

5.4.6 Object Reference Identity .. 129

5.4.7 Object Data Synchronization .. 130

5.4.8 Object Lifetime Management .. 133

5.4.9 Interoperability ... 138

5.5 Customization Standard .. 138

6 Component Model Implementation .. 139

6.1 Composition Infrastructure ... 139

6.2 Runtime Add-ons ... 142

6.3 Runtime Libraries ... 144

Table of Contents

v

7 Evaluation ... 147

7.1 Case Studies .. 148

7.1.1 Time Recorder ... 149

7.1.2 Cross Compiler with IDE .. 153

7.2 Component Prefabrication and Reusability ... 155

7.2.1 Prefabrication .. 156

7.2.2 Reusability ... 157

8 Summary ... 163

8.1 Contributions .. 163

8.2 Open Issues ... 165

8.3 Future Work .. 167

8.4 Conclusion ... 168

Appendix A: Hosting Plux Web Applications ... 169

A.1 The Plux Web Control ... 170

A.2 Runtime Configuration ... 171

Appendix B: Runtime Procedures... 177

B.1 Runtime Lifetime .. 177

B.1.1 Startup ... 177

B.1.2 Run ... 180

B.1.3 Shutdown .. 183

B.2 Dispatcher Operations ... 185

B.2.1 Acquire .. 186

B.2.2 Release ... 187

B.2.3 Invoke and BeginInvoke ... 189

List of Figures ... 193

List of Listings... 197

Bibliography .. 199

Chapter 1

1

1 Introduction

Plugin architectures are well suited for building extensible and customizable

applications from components. Users of web applications would also benefit

from plugin architectures, because they could even tailor their web applications

with individual plugins as they are used to in component-based desktop

applications. As current plugin systems only target desktop applications, a

solution for web applications that are extensible and customizable by users is

needed. This chapter presents the problems of current plugin systems. It

introduces the research project that constitutes the context for this thesis, gives

an overview of the research contributions, and outlines the remaining chapters

of this thesis.

Despite the fact that software applications tend to become more and more feature-rich,

they are still often felt to be incomplete, because it will hardly ever be possible to hit all

requirements of a user out of the box, regardless of how big and complex an

application is. For desktop applications, plugin frameworks are a solution for this

problem, which allows developers to build a thin layer of basic functionality that can

be extended by plugin components and thus tailored to the needs of individual users.

However, as web applications increasingly supersede desktop applications, web

applications also become feature-rich and therefore should also be extensible and

customizable to tailor to the needs of individual users.

A number of web platforms allow developers to componentize web applications.

However, in existing solutions only developers can benefit from this modularity,

whereas users cannot adapt web applications with components. Moreover, existing

solutions only allow changing the set of components for a web application, but they do

not make web applications user-customizable, because all users are using the same set

of components. Developers can make their programs somewhat user-customizable,

e.g., by allowing the users to adjust the user interface or to disable specific features.

However, this must be individually programmed into each web application and is not

supported by the web platform.

Another issue that needs to be individually programmed is access to client-side

resources (e.g., integration of client-side software or hardware such as a point-of-sale

Introduction

2

terminal), because the integration of user-specific client-side plugins into server-side

web applications is also not supported by existing plugin systems.

This thesis presents Plux for Web, a component model and a component infrastructure

for building plugin-based web applications that are customizable and extensible with

individual components per user and that can be distributed across multiple computers.

The component model defines the metadata standard, the deployment standard, the

composition standard, the interaction standard, and the customization standard for

distributed web applications. The component infrastructure implements the

component model, and thus provides a platform that can assemble user-specific web

applications by seamlessly integrating user-specific components, which can be

installed on server-side and on client-side computers.

1.1 Research Context

This thesis was realized as part of the industrial research project: Component

architectures for next-generation business computing systems. One of this project’s goals is

to design and implement a component model and a composition infrastructure for

extensible and customizable web-based enterprise applications. The project is funded

by and conducted in close cooperation with BMD Systemhaus GmbH and the Christian

Doppler Laboratory for Automated Software Engineering associated with the Institute of

System Software at the Johannes Kepler University Linz. BMD builds enterprise resource

planning software for small and medium-sized companies in Austria, Germany, and

Hungary.

Earlier in this project, the Plux component model and composition infrastructure for

desktop applications [Wolfinger, 2010] was developed as the basis for the next-

generation business applications of BMD. Programs developed with Plux are built with

fine-grained components, which are assembled by Plux, using a plug-and-play

approach. Users can adapt the program on-the-fly to the working situation at hand by

adding, removing, or swapping the set of components to be used.

BMD offers its enterprise software as a desktop application as well as a browser-based

web application. They want to offer the flexibility provided by Plux both for desktop

applications and for their web application. The difference between the desktop

application and the web application is that the latter must support multiple users and

component distribution over the network. Multi-user support means that the

enterprise application should be customizable for an individual user to meet his

specific needs without interfering with the other users. Component distribution

support means that the enterprise application should be seamlessly assembled from

plugin components that can reside on the web server as well as on the client-side

computer.

The next section discusses the problems that must be solved to support multiple users

and component distribution in dynamically composed web applications.

Problem Statement

3

1.2 Problem Statement

Despite the success of plugin systems for desktop applications, they still suffer from

several deficiencies in the domain of web applications. This thesis discusses the

problem of how to assemble web applications such that every user can have his

individual set of components and how to allow these components to reside on different

computers. Existing web frameworks and plugin systems do not provide a solution for

this problem, as they lack support for the following issues to be solved. How these

issues can be solved is an open research problem.

 User-specific plugins. In web applications that are built with existing web

frameworks and plugin systems, applications are assembled with the same set

of components for every user. Such web applications do not allow individual

users to tailor the program to their needs, e.g., by integrating their user-specific

components. Of course, the programmer of a web application could program

such a feature manually, but this effort must be repeated for every web

application. A reusable solution for user-specific plugins is missing.

 Dynamic reconfiguration. Existing web frameworks do not support the

adaptation of a web application without restarting it. Dynamic reconfiguration

is particularly useful in combination with user-specific plugins, because it

would be impractical to restart a web application every time a user adds

plugins.

 Distributed plugins. Web applications that are built with existing plugin

technology typically require plugins to reside on the web server. Such

applications cannot integrate user-specific plugins from the client computer;

this would be necessary, for example, in order to connect client-side hardware

like a barcode scanner to the web application. A solution for distributing

components of a web application to multiple computers is not available.

 Automatic composition. Web frameworks typically do not connect components of

a web application automatically. Even if web frameworks are combined with

plugin systems that support automatic composition, distributed components

still need to be connected programmatically. Support for automatic

composition of distributed components is not available. Automatic composition

for local and for remote components would be useful to enable users to change

user-specific components on the server side and on the client side without

causing any extra programming effort for the developers of a web application.

 Implementation transparency for distributed components. Plugin systems that

support distributed components use technologies such as remoting or web

services for communication between these components. As such technologies

do not support distributed thread management, reference identity, and data

Introduction

4

synchronization for serialized objects, distributed components must be

implemented in a different way than local components. What we would like to

have is implementation transparency, i.e., we would like to implement each

component in the same way, regardless of whether it is connected locally or

remotely. Implementation transparency would also allow users to install the

same component either on the server side or on the client side, as their

implementations do not differ.

1.3 Research Contributions

This thesis claims the following research contributions, which are combined into a

single coherent component model for building plugin-based web applications that are

customizable and extensible with individual plugins per user and that supports plugin

distribution across multiple computers:

 Automatic composition. The thesis presents an automatic composition approach

that allows adding and removing plugins in a plug-and-play manner regardless

if plugins are deployed locally on a single computer or if they are distributed

across multiple computers. The composition infrastructure uses the self-

contained metadata of plugins to retrieve requirements and provisions of

components and connects them automatically.

 Declarative composition behaviors. The thesis presents composition behaviors,

which are reusable composition logic that can be attached declaratively to

components. Composition behaviors can influence the automatic composition

process, e.g., to ensure a certain composition order for components, which may

are dependent on the existence of other components; to cancel certain

composition operations because of unfulfilled preconditions, or react on

composition events to trigger new composition operations. Composition

behaviors encapsulate such composition logic into a reusable composition

library.

 User-specific plugins. This thesis presents an approach that enables users to

extend and customize web applications with their individual user-specific

plugins. The same application can be extended in different ways by different

users at the same time without affecting other users. For this, the composition

infrastructure maintains individual composition states for users in separated

user scopes.

 Distributed plugins. This thesis presents an approach for distributed plugin

components that enables users to install plugins either on the server-side or on

the users' client-side computers. The distribution of plugins is transparent to

plugin developers, i.e., the implementation of plugins remains the same

Project History

5

regardless if they are connected locally on the same computer or remotely on

different computers. For this, the presented component model specifies

distributed thread management, reference identity and data synchronization

for distributed objects, as well as a distributed garbage collection mechanism.

 Composition infrastructure. The thesis presents the design and implementation of

a composition infrastructure that implements the component model that is

specified in the thesis. The infrastructure provides a platform that assembles

user-specific web applications from plugin components that can be distributed

across multiple computers. It composes web applications dynamically, i.e., the

web application can be reconfigured by swapping sets of components without

restarting the application.

1.4 Project History

Plux for Web is part of the Plux project, which researches composition infrastructures

for dynamically composed applications. The original Plux project [Wolfinger, 2010]

targeted desktop applications only. The Plux research project is conducted by the

Christian Doppler Laboratory for Automated Software Engineering associated with the

Institute for System Software at the Johannes Kepler University Linz, in cooperation

with the industry partner BMD Systemhaus GmbH.

At the time of this writing the Plux team comprises: the project manager Reinhard

Wolfinger; Markus Löberbauer, who works on testing and debugging of dynamically

composed applications; and the Ph.D. student Markus Jahn, who works on

dynamically composed web applications.

Our industry partner BMD Systemhaus initiated the project in an effort to build the

basis for their next-generation enterprise application, which comes in a desktop and a

web variant. Both variants should be extensible with third-party plugins and

reconfigurable at run time.

In 2006 we designed a component model based on the metaphor of slots and

extensions [Wolfinger et al., 2006]. In 2007, we published a composition infrastructure

and demonstrated novel applications, which can be reconfigured in a plug-and-play

manner. For the first time, users could add components to a program and remove

components from a program to adapt it to their working situation at hand, without

programming, configuring, or even restarting the program. A further novelty was a

visualizer that instantly shows the program’s architecture and its changes.

Furthermore, we published integration models for secure integration of untrusted

third-party plugins [Wolfinger and Prähofer, 2007].

From 2008 to 2010 we redesigned Plux to reduce the programming effort for

component developers. This has been accomplished with a richer composition model

[Jahn et al., 2011], composition behaviors [Jahn et al., 2010a], and component templates

Introduction

6

[Wolfinger et al., 2010]. With the richer composition model, components can share

information in a standardized manner; with behaviors, composition logic can be

reused to control complex composition scenarios declaratively; and with component

templates, custom components can be generated from generic component templates.

From 2010 to 2012 Plux was extended to support distributed multi-user web

applications [Jahn et al., 2010b; Jahn et al., 2011]. We designed a method for

composability testing and composition debugging [Löberbauer et al., 2010;

Löberbauer et al., 2012] and implemented a composability test tool and a composition

debugger [Lengauer, 2012]. We also created a model for retrofitting security in

component-based programs [Wolfinger et al., 2012] and a security manager for license

enforcement and retrofitted security in Plux [Hribernig, 2012].

During the whole project the following student projects were conducted based on Plux:

Stephan Reiter and Christian Mittermair componentized a customer relationship

management application [Reiter and Wolfinger, 2007; Mittermair, 2010], Markus Jahn

created a cross compiler infrastructure [Jahn, 2009], Mario Eder created a web site

monitor [Eder, 2008], Rainer Pichler created a tool to record run-time statistics

[Pichler, 2009], Zoltan Toth created a script interpreter for composition scripts, Andreas

Gruber created a graphical composition tool for Plux programs [Gruber, 2010], Sabine

Weiss created a highly extensible customer relationship management application

[Weiss, 2010], Patrick Hagmüller ported the core elements of Plux from C# to Delphi

[Hagmüller, 2013], Bernhard Schenkermayr created a highly customizable calculator

[Schenkermayr, 2013], Thomas Reinthaler created an application builder

[Reinthaler, 2012].

1.5 Structure of the Thesis

Chapter 2 discusses the state of the art for component systems from three angles: it

looks at systems for local components, at systems for distributed components, and at

systems for web application components. It defines the component terminology and

the distributed systems terminology used in this thesis.

Chapter 3 describes the Plux component model, which specifies metadata, deployment,

composition, interaction, and customization standards for Plux components.

Chapter 4 describes the benefits of the Plux component model for the web with typical

scenarios for component-based distributed multi-user web applications that are

dynamically reconfigurable. It uses a case study of a web application for recoding

working hours.

Chapter 5 describes the Plux component model for the web, which extends the

component model from Chapter 3 with specifications of deployment, composition and

interaction standards required for distribution, multi-user, and web support.

Structure of the Thesis

7

Chapter 6 describes the Plux composition infrastructure, which implements the Plux

component model and allows executing distributed multi-user web applications built

from Plux components.

Chapter 7 evaluates the approach of building component-based distributed multi-user

web applications with Plux by the use of case studies. It presents a number of statistics

concerning the degree of component reusability, memory consumption and delay time

issues by comparing component-based desktop applications with component-based

distributed multi-user web applications.

Chapter 8 summarizes the contributions of this thesis, addresses open issues of the

current approach, presents ideas for future research, and concludes with an overview

of the current state.

Chapter 2

9

2 State of the Art

The idea of composing desktop applications from loosely coupled, prefabricated,

and reusable software components is already pursued since several decades.

More recently it became popular to use plugin frameworks in order to make

desktop applications customizable and extensible with third-party plugins.

However, in times of the internet, desktop applications are increasingly

overtaken by web applications. There are many web application frameworks that

support developers in building web applications. Although such frameworks

embrace component technology, they have not yet picked up the concept of

plugin components. The idea of Plux for web applications is to bring both

worlds together, plugin component systems and web application frameworks.

This chapter overviews the history of both worlds from three angles, namely

components for applications that run on a single computer, such that are

distributed across multiple computers, and such that are used specifically to

build web applications. Furthermore, it defines the component terminology used

in this thesis.

In contrast to monolithic applications, component-based applications enable

developers to reuse program logic implemented by other developers, as well as to

replace an implementation of one manufacturer with an implementation of another,

without affecting the rest of the application. Furthermore, using composition,

developers can assemble programs from components without programming effort.

With plugin components, end users also can extend and customize their applications,

e.g., by adding features for their specific needs and by removing features they do not

need. Distributed component systems enable developers to build applications that are

distributed across multiple computers in different locations, e.g., to connect the

applications of businesses that work together. Web application frameworks enable

developers to build applications where the application runs on a web server and the

users access it using a web browser, thus minimizing the deployment effort for the

manufacturers and the maintenance effort for the users.

This chapter presents the history, the terminology, and the capabilities of technologies

that are relevant for this thesis. These technologies are grouped into component

technologies, distribution technologies, and web technologies in the following sections:

State of the Art

10

Section 2.1 gives a historical overview from components to component-based web

technologies. Section 2.2 defines the component terminology, the distribution

terminology, and the web terminology. Section 2.3 describes capabilities that are

required to build component-based distributed web applications, evaluates which of

these capabilities are supported by existing technologies and concludes this chapter

with an overview of deficiencies of current technologies.

2.1 Historical Overview

Since this thesis deals with plugin-based distributed web applications, this section

deals with a historical perspective of the underlying technologies, namely components,

distribution, and web technology.

2.1.1 Component Technologies

The idea of component systems goes back to [McIlroy, 1968] who devised that software

should be componentized, i.e., built from prefabricated components, in order to

overcome the so-called software crisis. The term software crisis described the problems

that resulted from rising complexity of computer programs. The first component

systems that are still relevant today appeared 1964, as Dynamic Link Libraries (today dll

files in Windows) or Dynamic Shared Objects (Unix SO). Dynamic linking refers to

components that are linked while a program is loaded and was originally developed in

the Multics operating system [Schell, 1971].

The following sections present the history of today's component technology structured

by the major platforms Microsoft, Object Management Group, and Java, as well as Web

Component Technologies and Academic Component Technologies.

Microsoft Component Technologies

Microsoft started developing the Component Object Model (COM) [Microsoft, 2012c and

Box, 1998] in 1987. COM emerged from Dynamic Data Exchange (DDE)

[Microsoft, 2012a], a technology used to implement the clipboard in the Windows

operating system. In 1992, DDE evolved into Object Linking and Embedding (OLE)

[Microsoft, 2012b], a service to embed Microsoft Office documents into other documents.

OLE allowed, for example, embedding a spreadsheet into a text document and editing

the spreadsheet from within the word processor without switching applications. In

1995, the COM specification was published and it is still used in many services of the

Windows operating system, e.g., the Windows Explorer can be extended with COM

components. In 1996, COM was extended into the Distributed Component Object Model

(DCOM) [Microsoft, 2012d]. DCOM supports data exchange beyond computer

boundaries for distributed applications, using Microsoft Remote Procedure Calls

(MSRPC) [Microsoft, 2003]. Facing the complexities of OLE and the poor support for it

in development tools, Microsoft simplified the specification in 1996 and rebranded the

Historical Overview

11

technology as ActiveX [Microsoft, 1996 and The Open Group, 1999]. ActiveX was used

in the Internet Explorer web browser in order to embed active content into web pages.

Such ActiveX components are installed on the server, automatically downloaded to the

client, and executed in the browser. The development culminates in 1999 into COM+

[Microsoft, 2012e], which comprises DCOM and additional services, such as Microsoft

Transaction Server (MTS) [Microsoft, 1998] for distributed transactions, and as well as

Microsoft Message Queuing (MSMQ) [Microsoft, 2012f] for asynchronous inter-

application messaging. Today, COM+ is still an essential part of the Windows

operation system.

In 2002, Microsoft presented the .NET framework [Microsoft, 2012g], as a successor of

COM+. In .NET components are deployed as assembly files, which contain IL code,

metadata, and resources. .NET is language-independent, i.e., programs can be written

in multiple programming languages, such as C# and Visual Basic. .NET includes a

large base class library with support for remoting, web services, and web applications.

In 2010, Microsoft released the Managed Extensibility Framework (MEF)

[Microsoft, 2010]. MEF is a plugin framework that is based on .NET and uses .NET

attributes to specify component metadata, which are used by the MEF composition

engine to connect components with their required services. Currently MEF is used in

the Microsoft Visual Studio IDE [Microsoft, 2012h] to make it extensible and

customizable via third-party plugins.

OMG Component Technology

In 1991, the Object Management Group, an international consortium of renowned

corporations, specified the Common Object Request Broker Architecture (CORBA)

[OMG, 2012]. CORBA is a middleware standard for distributed components that

allows interacting software components to be distributed across multiple computers.

CORBA is a binary standard, which is implemented in various programming

languages, available for multiple platforms, and supports multiple communication

protocols. Since 1991 the development of CORBA is ongoing: the specification of

CORBA 2.0 was released in 1997, the specification of CORBA 3.0 was released in 2002,

and the current specification is CORBA 3.3, which was released in November 2012.

Java Component Technologies

In 1996, Sun Microsystems developed a component system called Java Beans [Sun

Microsystems, 1996]. Beans basically are plain Java objects conforming to the Java

Beans convention, i.e., a bean implements a defined set of properties as getter and

setter methods. A bean can encapsulate multiple Java objects, can be serialized, and

thus can be transported over the network. Developers can use, for example, the bean

workbench to compose an application from beans, serialize composed applications,

and deploy them to users, without any programming effort [Beer, 2000].

State of the Art

12

In 1996 Jaroslav Tulach started together with a group of students the NetBeans project

[Oracle, 2013b] at the Faculty of Mathematics and Physics of the Charles University in

Prague. NetBeans is an application framework, which allows developers to compose

applications from a set of modules. Initially NetBeans was called Xelfi, because the goal

of the project was to write a Java IDE similar to the Delphi IDE. The name NetBeans

was derived from network JavaBeans. The NetBeans team wanted to create an

abstraction of the network and enable developers to manipulate network JavaBeans

from any IDE. However, extending the existing IDEs with plugins was very difficult.

Therefore the NetBeans team decided to use the experience from Xelfi to create a new

modular IDE. In 1999 NetBeans DeveloperX2 was released, which was redesigned for a

modular architecture and which forms the basis of the current NetBeans platform.

Furthermore, also in 1999, Sun Microsystems became involved in the NetBeans project.

A few months later, NetBeans became an open-source project. Many developers started

using the NetBeans IDE's platform to build their own applications from their own

plugins. In 2010 Oracle acquired Sun Microsystems and NetBeans became a part of

Oracle, which continues work on the NetBeans project. [Oracle, 2013c; Oracle, 2013d]

In 1997, IBM released Enterprise Java Beans (EJB) [Vatkina, 2013], a server-side

component architecture for modular enterprise applications. EJB is used to implement

application servers and targets concerns such as persistence, transactions, security, and

distribution. EJB uses Java Remote Method Invocation (RMI) [Oracle, 2010], an API for

distributed communication based on an object-oriented version of Remote Procedure

Calls [Thurlow, 2009].

In 2000, the Open Services Gateway Initiative Alliance (OSGi) [OSGi Alliance, 2012a]

published a specification for the OSGi component system. The Java-based OSGi

provides a service registry that is used by components to retrieve their requested

services. OSGi implementations are available from multiple vendors, e.g., Knopflerfisch

[Makewave, 2013], Apache Felix [The Apache Software Foundation, 2008], or Eclipse

Equinox [Equinox, 2012].

In 2001, IBM presented Eclipse [Eclipse, 2006], an integrated development environment

(IDE) for Java. Eclipse is plugin-based so that users can assemble a custom IDE for their

specific needs from plugin components. Since 2004 Eclipse is based on the OSGi

implementation Equinox [Equinox, 2012]. Eclipse evolved into the most outstanding

representative for plugin infrastructures, because various third-party developers

provide a vast number of plugins, e.g., for version control, bug tracking, or profiling.

In 2007, the Eclipse Rich AJAX Platform (RAP) [RAP, 2012; Muskalla and

Sternberg, 2007] was introduced. Since Version 2.0, RAP was renamed to Remote

Application Platform. It allows building web applications using Eclipse plugins. Thereby

a server-side Equinox environment loads the Eclipse plugins onto a web server and

RAP renders the user interface for web browsers using technologies such as HTML

[Berjon et al., 2013], JavaScript [Ecma, 2011], and JavaScript Object Notation (JSON)

[Crockford, 2006].

Historical Overview

13

Netscape Component Technology

The most frequent use of plugin components in the web are browser plugins. Browser

plugins enable users to customize web browsers, which are used to access web

applications, but not to customize the accessed web applications. Starting in 1996,

Netscape introduced the Netscape Plugin Application Programming Interface (NPAPI)

[NPAPI, 2012 and Oliphant, 1996] in the Netscape web browser. Since 2004 all

renowned web browsers use this API to integrate plugins for activate content, e.g., to

view PDF documents, or to play music, video, and flash content.

Academic Component Technologies

In 1998, the Department of Distributed and Dependable Systems of the Charles

University in Prague published the component system SOFA [Hnetynka and

Plasil, 2006; Bures et al., 2006; Bures et al., 2007]. SOFA is a system for building

distributed component-based applications. The component model is hierarchical, i.e., a

component can consist of a set of other components, either primitive or composite.

Primitive components are programmed, whereas composite components are

declaratively composed from other primitive or composite components.

Since 2006, the Christian Doppler Laboratory for Automated Software Engineering of

the Johannes Kepler University in Linz developed the Plux component system

[Wolfinger, 2010]. Plux is a plugin platform for extensible and customizable desktop

applications. It supports dynamic composition and thus enables developers to build

applications where users can load and integrate just those components they need for

their current work. Users can also reconfigure an application on-the-fly by swapping

sets of components while the application is running. From 2006 to now, Plux was

enhanced with various improvements on the component model, as well as a solution

for testing and debugging dynamically composed Plux applications. For detailed

information about the evolution of Plux see the project history in Section 1.4.

2.1.2 Distribution Technologies

Berkeley Sockets

In 1970 Berkeley Sockets [Tanenbaum and Van Steen, 2007 pages 141-142] enabled

developers to send data from one computer to another through a standardized

interface. The socket interface abstracts from the underlying operating system and is a

communication endpoint to which an application can write data that is sent over a

network to a remote socket, where an application can read the transmitted data. Today,

sockets are still base communication technology in all web systems.

Remote Procedure Calls (RPC)

In 1976, the first idea of Remote Procedure Calls (RPC) was published in [White, 1976]. In

1984, Andrew Birrell and Bruce Nelson published further work on RPC [Birrell and

Nelson, 1984] and implemented the first version of RPC. RPC allows developers to call

State of the Art

14

procedures on remote computers instead of using explicit message exchange for

remote interaction. The caller of a procedure is blocked until the receiver of the call has

finished executing the procedure and the result is returned to the caller. The message

passing, which is used behind the scene, is hidden from developers. In 1995, the

Network Working Group released a proposed standard for the RPC Protocol

Specification Version 2 [Srinivasan, 1995], which was updated by the draft standard for

RPC Protocol Version 2 [Thurlow, 2009] in 2009. The idea of RPC was extended by

other distribution technologies such as remoting.

Java Remote Method Invocation (RMI) / .NET Remoting

In 1997, Sun Microsystems released the Java Development Kit (JDK) Version 1.1

[Oracle, 2013a] including the Remote Method Invocation (RMI) [Oracle, 2010] technology.

Java RMI provides support for distributed objects and is the object-oriented successor

of RPC. It allows calling methods of distributed objects with Java objects as arguments

and as return values. In 2000, Sun Microsystems released the Java 2 Platfrom Standard

Edition (J2SE) 1.3 with an adapted RMI implementation that is compatible to the

CORBA [OMG, 2012] standard. Since 2004, J2SE 5.0 facilitates the implementation of

distributed applications by automatic stub generation for distributed objects. Today,

Java RMI is used for building distributed Java applications as well as for building

communication infrastructure of higher-level component technologies such as OSGi

Remote Services [OSGi Alliance, 2012b] or SOFA [Hnetynka and Plasil, 2006; Bures et

al., 2006; Bures et al., 2007].

In 2002, Microsoft released the .NET Framework 1.0 [Microsoft, 2012g] with support for

.NET Remoting [Microsoft, 2011a]. Similar to Java RMI, .NET Remoting provides an

infrastructure for distributed method calls between objects. In contrast to Java RMI,

.NET Remoting not only supports the transfer of serialized object copies or proxy

interfaces that forward calls to the original object on the remote computer, but .NET

Remoting also supports reference identity and data synchronization for special objects

that inherit the MarshallByRef base class. MarshallByRef objects do not only provide the

interface on the remote computer, but also their data fields. Modifications on the fields

of such an object get synchronized with its counterpart on the remote computer.

Web Services

In 1998, the World Wide Web Consortium (W3C) introduced Web Services

[Booth et al., 2004; Haas and Brown, 2004]. Web services are a platform-independent

API for components, which can be used to build distributed component-based

applications. Web services communicate using XML-based protocols, e.g., SOAP

[Gudgin et al., 2007] or XML-RPC [Winer, 1999]. The interface of a web service is

described using the Web Service Description Language (WSDL) [Christensen et al., 2001].

Web services that are documented with WSDL can be registered in a public repository

and discovered using the Universal Description, Discovery, and Integration (UDDI)

[Clement et al., 2004] service.

Historical Overview

15

In 2004, the WS-interoperability Organization (WS-I) [OASIS, 2013], which is an industry

consortium, created common guidelines for interoperability of web services. WS-I

published various bundled web service specifications, which are called WS-I Profiles.

The WS-I Basic Profile [Chumbley et al., 2010] comprises conditions for web service

implementations to be WS-I conformant, message specifications, specifications for

service description, publication and discovery, as well as security specifications.

Besides the WS-I Basic Profile, the consortium published a number of further WS-I

profiles such as for example the WS-I Attachments Profile, the WS-I Basic Security Profile,

or the WS-I Reliable Secure Profile.

Windows Communication Foundation (WCF)

In 2006, Microsoft released the .NET Framework 3.0 including the Windows

Communication Foundation (WCF) [Microsoft, 2012i]. WCF provides a unified

programming model for Microsoft's distribution technologies, targets interoperability

across platforms, and is used for building service oriented applications. Clients can use

different transport protocols for consuming a service. WCF supports SOAP

[Gudgin et al., 2007] over HTTP [Fielding et al., 1999], but also other messages over

TCP [Postel, 1981], Named Pipes [Microsoft, 2013a], or Microsoft Message Queues

[Microsoft, 2012f], which can be encoded as text or as compact binary format.

Furthermore, developers can use their own transport and encoding format, if required.

WCF supports reliable messaging, message queues, durable messages, and

transactions. In 2006, WCF was enhanced with support for the JavaScript Object

Notation (JSON) [Crockford, 2006] format to enable AJAX [Garrett, 2010] web pages for

consuming WCF services. In 2010, the release of the .NET Framework 4.0 added

support for Really Simple Syndication (former Rich Site Summary) (RSS) [Winer, 2003]

and for Representational State Transfer (REST) [Fielding, 2000] to WCF.

2.1.3 Web Technologies

The World Wide Web was invented by Tim Bernes-Lee in 1990. He developed the

HTTP protocol [Fielding et al., 1999], universal resource identifiers, as well as HTML

[Berjon et al., 2013]. Furthermore, he developed a web server and web browser. The

following sections present the history of technologies required for the Web.

Common Gateway Interface

In 1993, a team at the National Center for Supercomputing Applications (NCSA)

specified the Common Gateway Interface (CGI) [Robinson and Coar, 2004]; a standard by

which a web server can execute a program using input data that is sent by the web

browser. The result of the program is passed back to the web server and sent as

response to the web browser. Today, many large high-performance web sites still use

web systems based on the idea of CGI.

State of the Art

16

Server Side Includes

Between 1993 and 1995 (the exact date and author could not be established) Server Side

Includes (SSI) were invented. SSI is a standard that provides support to embed

dynamic content into HTML documents. It replaces placeholders in HTML with values

retrieved from environment variables. Placeholders can also be filled from SSI

commands that provide content, e.g., from external documents or programs. Today,

SSI is outdated and replaced by other technologies.

PHP: Hypertext Preprocessor

In 1995, Rasmus Lerdorf presented the PHP: Hypertext Preprocessor (PHP) [The PHP

Group, 2012]. PHP is an open source server-side scripting language designed for

building dynamic web applications. Instead of starting external processes like in CGI,

PHP embeds scripts into HTML documents and interprets them on the web server. In

contrast to SSI that can only embed values from environment variables or simple

functions, PHP scripts benefit from a feature-rich programming language and a

comprehensive web support library.

Java Web Technologies

In 1995, Sun Microsystems introduced Java Servlets [Mordani, 2009], a server-side Java

implementation with web capabilities such as parameter support and sessions. Servlets

are Java classes, which are instantiated in a servlet container on the web server in order

to handle client requests. The response contains dynamic content which is produced by

Java code. Thus Servlets are the Java pendant to CGI scripts. In 1995, Sun also

introduced Java Applets [Oracle, 2013e], which are Java applications that are deployed

on a web server, retrieved via a web browser, and executed in a web page on the client.

Java applets are executed in a sandbox and thus have no access to local resources, such

as the file system, if the permission is not granted by the user. In 1999, JavaServer Pages

(JSP) [Delisle et al., 2006] was released as a further improvement for dynamically

generated web pages. JSP allows embedding Java code and JSP commands into HTML

documents. A JSP compiler translates such HTML documents into a Servlet that

contains Java code. The same year, Sun Microsystems published the Java Enterprise

Edition (J2EE) [DeMichiel and Shannon, 2013]. J2EE includes several technologies that

are relevant for web application development, such as components for server

applications called Enterprise JavaBeans (EJB) [Vatkina, 2013], Java Database Connectivity

(JDBC) [Anderson, 2006], Remote Method Invocation (RMI) [Oracle, 2010], and support

for web services [Booth et al., 2004; Haas and Brown, 2004]. In 2004, JavaServer Faces

(JSF) [Burns, 2013b] was introduced, a Java-based web application framework for web

user interfaces. With JSF user interfaces are programmed with web controls in an

object-oriented manner using the Model-View-Controller pattern. At run time, the

framework renders the web controls into HTML.

Terminology

17

Microsoft Web Technologies

In 1996, Microsoft presented a successor technology of Server Side-Includes (SSI) called

Active Server Pages (ASP) [Microsoft, 2012j]. ASP supports dynamically generated web

pages, by embedding VBScript code into HTML documents, which is interpreted by

the web server. ASP provides support for retrieving parameters from the request, for

sessions, and for database connectivity. In 2002, Microsoft released an extended

version called ASP.NET [Microsoft, 2012k] as part of the .NET Framework. As

ASP.NET is built on the Common Language Runtime [Microsoft, 2012l], developers can

use any of the languages support by .NET, such as C#, Visual Basic, and C++. In

contrast to classic ASP, ASP.NET is compiled instead of interpreted, it is object-

oriented, supports web controls, remoting, and web services. In 2007, the Silverlight

technology [Microsoft, 2011b] was released. Silverlight is a framework for building rich

web applications that support interactive media. The runtime environment is installed

as a browser plugin on the client side and allows executing .NET assemblies, which are

downloaded from a web server on demand, when a web application is accessed. In

order that access to local resources, e.g. the file system, is possible only if the user

grants the permission, Silverlight assemblies are executed in a sandbox.

Portlets

In 2003, Portlets [Abdelnur and Hepper, 2003], which allow building extensible web

applications, were introduced. The Portlet API is a thin layer on top of Java Servlets

[Mordani, 2009] for integrating user interface components into web applications.

Portlets can communicate with each other and are integrated into a web site using a

portal server.

2.2 Terminology

This section covers the terminology that is used in this thesis. The terminology is

organized by technologies, i.e., terminology for component systems, terminology for

distributed systems, and terminology for web systems.

2.2.1 Component Terminology

Current component systems comprise similar artifacts but use different terminology.

To establish a common language, the following sections explain the terminology from

the literature and compare it to the terminology of current component systems.

Software Component

Heineman and Councill [2001], Weinreich and Sametinger [2001], as well as Szyperski

[2002], unanimously define a software component as a software element that conforms

to the standards specified by a component model with the following characteristics: it

describes its functionality through clearly defined interfaces; it is loosely coupled to

State of the Art

18

other components, i.e., it identifies other components by their interfaces but not by

their implementation; the implementation is hidden, i.e., it implements an abstract data

structure or an abstract data type; it is designed and packaged for third-party reuse,

i.e., it can be independently deployed and composed with other components without

modification.

According to Weinreich and Sametinger [2001] components can be implemented in an

object-oriented way, either as a single class or by multiple classes, or in a non-object-

oriented (procedural) way. For object-oriented systems, they define the term component

instance as an object that is an instantiated component.

Component Model

A component model defines a set of standards for component implementation, namely

the interface, metadata, interaction, and composition standard. The interface standard

declares how components need to declare their provided and required functionality.

The metadata standard describes how metadata such as the name of a component can

be specified and obtained. The interaction standard specifies how components can

communicate with each other. The composition standard defines how components can

be composed to create a larger structure and how components can be substituted.

Furthermore, a component model defines how components must be packaged so that

they can be deployed independently; it defines the executable software elements that

are required to execute the components conforming to the model as well as the coding

conventions and documentation standards.

The following sections explain the standards of a component model in more detail,

according to Heineman and Councill [2001] and Weinreich and Sametinger [2001].

Interface Standard

The interface standard defines how a component's behavior can be described by means

of interfaces, non-functional specifications, and documentation. The elements of an

interface are the names of operations, their parameters with valid parameter types, as

well as optionally other elements, such as preconditions, postconditions, exceptions,

and attributes that specify further interoperability constraints, e.g., a thread model or

remoting capabilities. Many component models use an interface definition language

(IDL) to describe interfaces and their elements. Interfaces serve as a contract between

components, i.e., components use interfaces to specify the required and provided

services. Components may specify required interfaces as mandatory, i.e., if this

requirement is unsatisfied, the component itself may not be able to provide certain

services. A component model can require that every component must provide a set of

specific interfaces in order to conform to the component model.

Metadata Standard

The metadata standard defines how information about interfaces, components, and

their relationships is specified and how it can be obtained. The metadata of

Terminology

19

components is used for composition, scripting and reflection. Typically a metadata

standard includes a naming standard that defines a schema for globally unique names

for interfaces and components. Many component systems use, for example, globally

unique identifiers (GUID) or hierarchical namespaces to avoid name clashes.

Interaction Standard

The interaction standard (also referred to as interoperability standard) specifies how

two or more components can communicate and exchange data, e.g., it specifies the

calling conventions, or how control is shared in communication channels, either within

a single process, between processes on a single computer, or across multiple computers

on a network. For distributed communication, the interaction standard defines

common data representation and invocation semantics. It may standardize network

protocols used for communication among components, e.g., SOAP, Remote Method

Invocation (RMI), or Internet Inter-Orb Protocol (IIOP). Furthermore, the interaction

standard covers a component’s context dependencies, e.g., dependencies on other

components, the operating system, or hardware resources such as a network

connection.

Composition Standard

The composition standard defines how components can be composed and how already

composed components can be replaced by other components. Composition is the

process of combining two or more components so that components can interact with

each other. Component reconfiguration means to recompose a program by adding,

deleting, or replacing a component. Both, composition and reconfiguration can be done

using general-purpose programming languages, scripting or glue languages, visual

programming, composition tools, or component infrastructures.

Packaging and Deployment Standard

The packaging and deployment standard defines the structure and semantics for

deployment descriptions. A component is deployed when it is installed and configured

in a component infrastructure. It must be packaged with all required artifacts that will

not exist in the component infrastructure, i.e., the code, configuration data, other

components, and additional resources. The deployment description lists the contents of

the package.

Component Model Implementation

The component model implementation comprises executable software elements that

are required for execution of components that conform to a component model. It is

typically a thin layer on the top of an operating system and must provide dedicated

services for retrieving the metadata of components and registering the interfaces of

components in an interface repository. For component development, it must provide

tools for defining interfaces (e.g., an IDL compiler), for defining metadata, and for

packaging components.

State of the Art

20

Customization

Customization means that a consumer adapts a component prior to its installation or

use. Components can be customized, for example, with a deployment tool that either

changes the component’s metadata or with interfaces, which the component offers for

this purpose. [Weinreich and Sametinger, 2001]

Extension, Host, and Contributor

Wolfinger [2010] defines an extension as a component that can be plugged into some

other component thus extending the other component's behavior. An extension can be

a host, a contributor, or both. An extension that integrates another extension (i.e.,

requests a service) is called a host, and the extension that is integrated (i.e., provides a

service) is called a contributor.

Composition Model

Wolfinger [2010] defines the composition model as the subset of the component model

that is responsible for discovering components, composing them, and maintaining

them in the composition state. Discovery is the process that detects components and

retrieves their metadata. Composition is the process that connects components, thereby

matching requirements and provisions. This can be done automatically, i.e., the

composition model defines how it automatically connects components based on the

request specified in the metadata, or it can be done programmatically, i.e., the hosts use

a composition API that is specified in the component model to find and connect their

contributors manually. The composition state holds the instantiated components as well

as their connections.

2.2.2 Distribution Terminology

The following sections define the terminology used in distributed systems. This

terminology is used to describe the capabilities of existing distribution technologies in

the following section and to describe Plux for Web.

Distributed System

According to Tanenbaum and Steen [2007] a distributed system is a collection of

independent computers that appear to the user of the system as a single computer, i.e.,

although the computers are autonomous hardware entities, the software makes them

appear as a single computer to the user.

Server / Client

In a distributed a system, computers can have different roles, i.e., a computer can either

act as a server or as a client. A server is a computer, which provides a certain service for

one or multiple clients. A client is a computer, which uses a service provided by a

server. One computer can have both roles at a time, i.e., it can act both as a server and

Terminology

21

as a client. The interaction between a server and a client is called request-reply

interaction. [Tanenbaum and Van Steen, 2007]

Distribution Transparency

Even though a distributed system is executed on multiple computers, it appears to

users as if it would be executed on a single computer. Distribution transparency means

that the distribution is hidden from the developer, too. It can be achieved on different

levels: if a distributed system is location transparent, developers need not care about

where the remote computer is actually located; if it is access transparent, developers

can access services in a uniform way, regardless of whether the service is local or

remote; if it is implementation transparent, local and remote services can be

implemented in the same way, i.e., no further programming effort is necessary to make

a service remotely accessible.

Distributed Object, Remote Object, Serialized Object

In a program that is implemented in an object-oriented manner data and operations are

encapsulated in objects, and the operations are made accessible via interfaces. In a

distributed system, some objects are distributed, i.e., they do not reside on a single

computer, but are transmitted from one computer to another. Distributed objects can

either distribute only their interface or both their state and their interface. An object

which only distributes its interfaces is called a remote object. With a remote object the

distribution aspects are hidden behind the interface, i.e., its implementation resides on

the computer where the remote object lives, while other computers make calls through

the distributed interface and calls are forwarded to the original object. An object that

distributes its state as well as its interfaces is called a serialized object. With a serialized

object the state is copied from the original computer to the remote computer. Method

calls on the remote computer are executed locally on the copied object. As changes of

the object’s state do not affect the original object, the developer must synchronize the

changes back to the original object. [Tanenbaum and Van Steen, 2007]

Object Data Synchronization

The state of serialized objects is replicated on multiple computers. Object data

synchronization is the mechanism that keeps the state of a serialized object consistent

across multiple computers. On each modification of an object’s state, object data

synchronization transmits the changes to all other computers and updates the object

states there.

Object Reference

An object reference identifies a distributed object. It typically includes the network

address of the computer where the object resides and an object identifier. Object

references allow clients to bind to distributed objects. [Tanenbaum and Van

Steen, 2007]

State of the Art

22

Reference Identity

On remote method calls, reference identity ensures that object references which are

identical in the original environment of the object, are also identical in the remote

environment, i.e., if an object is transferred to a remote environment multiple times, the

remote environment always gets a reference to the same object. Vice-versa, if the object

is transferred back from a remote environment to the original environment, the

reference to the original object is used in the original environment. Depending on the

system, this can be ensured for remote objects, for serialized objects, or for both.

Lifetime Management

Lifetime management constitutes policies for creation and destruction of distributed

objects. Simple approaches are, for example, to create an instance of a distributed object

for each call and destroy it after the result is passed back to the caller, or to apply the

singleton pattern to a service and create a single shared object at startup time and reuse

the same shared object for each call until the end of the program. If the distributed

system supports sessions, shared objects can be used within a session to provide a

separate object per user session.

If the lifetime management pursues the same lifetime policies for distributed objects as

for local objects, implementation transparency can be achieved. For example, if

reference counting is used for local objects, distributed reference counting must be

used for distributed objects; if local objects are garbage-collected, distributed garbage

collection must collect distributed objects. To connect reference counting or garbage

collection across multiple computers requires coordination, e.g., by periodically

pinging other computers whether a remote object is still in use.

Thread Management

Thread management constitutes policies with respect to which threads are used for

executing the methods of distributed objects. Simple approaches are, for example,

using a single thread to execute all method calls; assigning a dedicated thread for every

distributed object; or acquiring a new thread from a thread pool on every method call.

For implementation transparency, the thread management must ensure the same

threading policy for local method calls as for remote method calls. [Tanenbaum and

Van Steen, 2007]

Object Server

An object server maintains object references and the corresponding instances of

distributed objects. It manages the life-cycle of distributed objects and the threading of

method calls to them. Service providers register their distributed objects in the object

server, clients retrieve them. [Tanenbaum and Van Steen, 2007]

Terminology

23

Fault Tolerance

As network communication is unreliable, remote method calls are more prone to

failures than local method calls. Fault tolerance is the characteristic by which a system

can mask the occurrence and recovery from failures. A system is fault tolerant if it can

continue to operate in the presence of failures. For example, a fault tolerant system can

reconnect to a remote computer after a previous failure and complete a transaction.

[Tanenbaum and Van Steen, 2007]

Security

Security in distributed systems concerns authorization as well as secure

communication between remote computers. The communication is secure if the sender

and the receiver communicate through a secure channel so that only they can access

the transferred messages. Authorization ensures that a remote computer gets only

those access rights to which it is entitled. [Tanenbaum and Van Steen, 2007]

2.2.3 Web Terminology

The following sections define the terminology used in web applications. This

terminology is used to describe the capabilities of existing web technologies in the

following section and to describe Plux for Web.

Web application

A web application is a program that is executed on a web server and accessed by a web

browser on a user's computer. The user opens a web application by entering the web

address of the application in the web browser. The web browser generates a request

(see below) and sends it to the web server. The web server processes the request and

generates a response (see below), which contains HTML (and possibly JavasScript) that

is sent back to the web browser to be rendered there. Web applications can be accessed

by multiple users from different computers at the same time.

Request

A request is a message sent from a web browser to a web server containing a command

with parameters to be executed by the web application as well as additional

information, such as user identity or browser information. A request is the input that is

processed by a web application.

Response

A response is a message that is produced by a web server as an answer for a request.

The response contains the result that was generated from the web application and

contains HTML (and possibly JavaScript), which is sent back to the client-side web

browser to be rendered there.

State of the Art

24

Round Trip

A round trip is the sequence of sending a request to the server, processing it by the

server-side web application, and replying the response back to the web browser.

Round trips are triggered by users of a web application either when they enter a web

address in the web browser or when they click on a button or on a link. Round trips

can also be triggered by client-side script code that is executed by the web browser.

Session

A session is an interaction sequence between a web browser and a web application

with related round trips. In principle, every round trip is independent from other

round trips. However, web servers can assign consecutive round trips to sessions, in

order to allow web applications to maintain individual application state per user.

2.3 Evaluation of Existing Technologies

Web applications that are component-based, customizable per user, and distributed

across multiple computers, require the following capabilities: componentization,

customization, distribution, multi-user, and web support. Existing systems typically

cover only a subset of these capabilities. Component systems, for example, cover

componentization and customization. However, they do not offer multi-user support.

Web systems, on the other hand, cover multi-user support and web support, but do not

offer customization. Section 2.3.1 describes the relevant capabilities in detail,

Section 2.3.2 evaluates which capabilities are supported by existing technologies, and

Section 2.3.3 addresses their remaining deficiencies for building component-based

distributed multi-user web applications.

2.3.1 Relevant Capabilities

This section dissects the relevant capabilities into individual features, and describes

why those capabilities are useful for building user-customizable web applications that

can be distributed across multiple computers.

Customization Capabilities

Customization means to adapt features of an application to meet specific requirements

of individual users. Depending on the capabilities of a system, different stakeholders

can customize an application: the developer can always customize it, because he can

modify the source code and recompile it; the deployer can customize it, if the system is

configurable, e.g., by using a configuration file; and the end user can customize it, if the

system provides a configuration mechanism that is suited for end users, e.g., in the

user interface.

A web application follows the client-server paradigm, i.e., the application is executed

on a server and is accessed through a web browser that is executed on the client. Thus

Evaluation of Existing Technologies

25

customization is feasible on the server or on the client. Depending on a system's

customization capabilities, the application can be customized on the server, on the

client, or on both.

A web application can be customized either by changing its configuration (e.g., by

changing a value in a configuration file) or by modifying its composition (e.g., by

replacing a component), if it is component-based. Typically, composition offers more

flexibility than configuration, because it allows a component to be completely replaced

with another one or to be extended by new components.

Depending on its architecture, a web application can be customized in all parts or only

in predefined parts. With a component-based architecture, the application can be

customized in all parts that are implemented as a component. In contrast, with a

monolithic architecture, the developer needs to explicitly define customization points

to make a certain part of the application customizable.

Customization can take place at different times during the life of a web application: it

can happen at development time, at deployment time, at startup time, and at run time. The

later the customization should be performed, the more flexible the mechanism must be.

Of course, the developer can customize the web application by modifying the source

code at development time. At deployment time, the administrator can only customize

the web application, if the developer provides a mechanism for that, e.g., a setup

routine with customization options. At startup time, the web application can be

customized, if it retrieves configuration from a source that can be modified by the

administrator, e.g., a configuration file. Customizing a web application at run time

demands the most flexible mechanism, because the web application must react to

configuration changes while it is running and must adapt itself accordingly.

Distribution Capabilities

Distribution means that a web application is executed on multiple computers, while it

appears to the user as if it were executed on a single computer. Depending on the

distribution capabilities of a system, the developer must consider distribution to a less

or greater extent, e.g., he might have to implement remote components in a different

way than local components. The more a system abstracts distribution, the more

reusable the components can be, because distribution aspects do not have to be

programmed, but are provided by the system.

A web application can be distributed across multiple server computers and possibly even

across client computers. In the web context, we define a web client as a computer that

requires only a web browser as an infrastructure. Following that definition, we

distinguish between systems that can distribute the web application only across server

computers (e.g., running a web server and a database server) and systems where parts

of the web application can also run on the web client.

A distributed system can provide multiple layers of transparency: location transparency,

access transparency, and implementation transparency. The more transparent a system is,

State of the Art

26

the less distribution must be considered by the developer: if a system is location

transparent, the developer can ignore on which computer a component is executed; if it

is access transparent, he can do local and remote calls uniformly; and if it is

implementation transparent, he can implement local and remote code in the same way.

A distributed system can provide more or less support for managing the lifetime of

distributed objects. Distributed objects occur either as dedicated service objects or as

general objects that are passed as arguments. In general, the more capabilities a system

provides, the less a developer must do. We distinguish the following levels of lifetime

management: with manual lifetime management, the developer himself must implement

a mechanism for creating, retaining, and releasing objects; with semi-automatic lifetime

management, the system provides support for such a mechanism (e.g., reference

counting), which the developer can use; with automatic lifetime management, the system

has such a mechanism (e.g., distributed garbage collection) built-in and the developer

does not need to care.

The fact that a distributed system is executed on multiple computers, but should

appear as if it were executed on a single computer, requires further support, if objects

are passed across computer boundaries. An object that is transmitted from one

computer to another exists twice. However, it should appear as the same object on both

computers. One transparency aspect is reference identity, i.e., if the same object is

transmitted twice, it must have the same reference on the target computer both times.

We distinguish systems by their support for reference identity of dedicated service

components, remote objects, and serialized objects. A further transparency aspect is data

synchronization of transmitted objects. Without synchronization, a change to a

transmitted object on the target computer, does not affect the original object on the

source computer. Thus changes need to be transmitted back to the source computer

manually. Systems can support synchronization in two ways: either a proxy is

transmitted as a remote object that forwards calls immediately to the original object on

the source computer and thus changes affect the original object at once; or the object is

serialized to the target computer and changes are automatically synchronized back to

the original object by the system.

As distributed systems are executed on multiple computers, already a single-threaded

application is executed by multiple threads, namely by a separate thread on each

computer. However, for implementation transparency, it should appear single-

threaded and the thread management must ensure that only one computer is active at a

time, i.e., that only one thread is executed at a time, and that each thread makes

synchronous calls. If repeated calls are made from the same thread on the source

computer, they must all execute on the same thread of the target computer, e.g., to

support thread-local data. Furthermore, if remote objects are passed across computer

boundaries, calls coming back from the remote side must be dispatched in the caller’s

original thread. For multi-threaded applications, the thread management must provide

the same support as for single-threaded applications, but for each thread individually

so that each thread on a computer has a counterpart on the other computers.

Evaluation of Existing Technologies

27

In contrast to applications that are installed on a single computer, for distributed

systems a decision has to be made as on which computer the components should be

installed. Depending on the system, this decision can be made either by stakeholders,

i.e., administrators or end users, or by the infrastructure of a distributed system.

Administrators can decide whether they want to deploy a component to one of the

server computers or to one or several client computers. End users can decide whether

to install a user-specific component just on their own client computer (if they need it

just locally) or to install it on the server (if they also need to use it from other client

computers). For components, which are installed on the server, but should be executed

on the client computer (e.g., rich user interface components), the infrastructure is

responsible for downloading them to clients on demand.

The support for transparency in a distributed system determines how freely parts can

be distributed across computers: with full transparency, any customizable part can be

installed on any computer; with limited transparency, defined parts that belong to the

same subsystem must be installed on the same computer.

In distributed systems with support for interoperability, components can be

implemented in different programming languages (e.g., C++, Java, or C#) and still be

integrated into a seamless web application.

Multi-user Capabilities

A multi-user web application is a program that is executed on one or multiple

computers and is shared by multiple concurrent users, where each user has its own

data that is separated from the data of other users. Furthermore, a multi-user web

application can appear or behave differently for each user.

Data, appearance, and behavior can be influenced by user-specific state, user-specific

configuration, or user-specific composition. The user-specific state contains the user’s data

(e.g., the shopping cart in a web shop). It can change the appearance (e.g., highlighting

items with long shipping time), and it can change the behavior (e.g., paging depending

on the number of items in the shopping cart). User-specific configuration can change

the appearance (e.g., display more or less detailed item descriptions) or change the

behavior (e.g., 1-click-checkout vs. checkout with explicit confirmation). User-specific

composition can change the appearance structurally (e.g., grid control instead of a list

control) or change the behavior (e.g., modified or additional business logic).

Customizations in a multi-user web application can affect either individual users or

groups of users. A user can belong to multiple groups and user groups can be organized

hierarchically. With hierarchical user groups, a group can inherit the customizations from

one or multiple parent groups, i.e., the groups are organized as a directed acyclic

graph, where each group inherits the customizations of its parent groups.

A multi-user web application can be customized (i.e., its appearance or behavior can be

changed) by the following stakeholders: the developer can program a customization

(e.g., to differentiate between different world regions); the administrator can customize

State of the Art

28

the configuration or deploy different components for users or user groups (e.g., to

differentiate between managers and workers); and the end user can customize his

configuration or deploy private components to his composition (e.g., to include his

personal address book).

Web Capabilities

A web application is characterized by the facts that it is executed on a web server, that

clients access it with a web browser, and that is supports multiple concurrent clients.

Web applications are based on the request-response pattern, i.e., the web browser

sends a request message to the web server, the web server forwards the request to the

web application, the web application processes the request and generates a response

message, and finally the web server sends the response back to web browser. Web

support means to provide the capabilities that are required to implement a web

application.

The client-side web browser must communicate with the web application. Without

communication support, a developer must encode messages before they are sent, and

decode them when they are received. With communication support, the web system

provides abstract means for encoding and decoding, i.e., the developer can handle

commands to the web application in a similar way as method calls.

When the web application processes a request, the developer needs to retrieve the

commands from the request. Without parameter support the developer needs to analyze

the request message manually. With parameter support, the web system provides the

command in a structured manner.

The response of a web application can contain static or dynamically generated content.

Without support for dynamic content, the developer must insert the dynamic elements

into the HTML programmatically. If the web system supports templates, the developer

can create HTML templates with placeholders, which are replaced by the dynamic

content. If the web system supports embedded code, the developer can embed method

calls into the HTML, which insert the dynamic content when they are evaluated. If the

web system supports web controls, the HTML programming logic is encapsulated in

objects; the developer can use an object-oriented programming style, i.e., set property

values, call methods, and listen to events; and the web system automatically renders

the HTML and generates JavaScript from the web controls.

As web applications support multiple users concurrently, they must handle multiple

requests at the same time. In a multi-threaded web system, each request is executed in

a separate thread. Without threading support, the developer must manage threads

manually, i.e., start and stop the threads, and manage them efficiently, e.g., by using a

thread pool. If threading support is available, the web system handles the thread

management.

In principle, web applications are stateless, i.e., they process every request

independently. However, typical web applications maintain a state for each user, i.e.,

Evaluation of Existing Technologies

29

they keep user data between consecutive requests, e.g., when the user collects multiple

items in a shopping cart. Web systems maintain user states in sessions. A session keeps

track of a user’s activity and is maintained as long as the user interacts with the web

application or exceeds a specified timeout. A web system can store session data in main

memory, persist it to non-volatile storage (e.g., to a disk or to a database), or even move it

to other computers within a server farm, to balance the load.

2.3.2 Capabilities of Existing Technologies

This section analyzes current technologies that are relevant for building component-

based distributed multi-user web applications. We analyze and compare the

technologies with regard to the required capabilities described in the previous section.

Figure 2.1 on page 29 and 30 shows the capabilities provided by existing technologies,

while the following subsections discuss them in detail.

Common Object Request Broker (CORBA)

CORBA [OMG, 2012] is a language-independent component model that isolates service

providers from service requestors by encapsulating interfaces. Interfaces of

components (object implementations) are specified in the CORBA Interface Description

Language (IDL). The contributors (providers) are stored in a repository and the hosts

(requestors/clients) retrieve their contributors using an object request broker (ORB). An

application can be customized by modifying the composition in all parts where

CORBA components are used, at development time as well as at deployment time, i.e.,

the developer can change the source code and the administrator can configure the

State of the Art

30

repository. End user customization capabilities are not provided. All components of a

web application built with CORBA are executed on the server exclusively, therefore

client-side customization cannot be provided.

Figure 2.1: Capabilities of existing technologies

Evaluation of Existing Technologies

31

The ORB core generates skeletons and stubs for components from the IDL descriptions

and handles communication between components that can be distributed across

multiple computers. The hosts use Object Adapters to access services from the ORB

and get support for location transparency and access transparency. The life cycle of

services is managed manually by the hosts. The lifetime management for objects that

are transferred as arguments is depending on the technology of the implementation of

CORBA, e.g., Java supports automatic lifetime management, whereas C++ supports

semi-automatic lifetime management with reference counting.

CORBA supports reference identity for services, distinguishing between CORBA

objects and instances of value types. A CORBA object implements an IDL interface

and is registered with the ORB. Such objects can be passed as reference parameters.

How other objects (value type objects) are passed, depends on the receiver. If the

receiver is a CORBA object, services are passed by reference, other objects by value. If

the receiver is a value type object, the semantics of parameter passing depends to the

programming language in which the ORB is implemented. A CORBA object can be

assigned to a computer by registering its Object Reference on the computer’s ORB.

Thus the distribution of CORBA objects can be controlled by administrators, but not by

end users. CORBA objects stay on the computer where they are registered; the

infrastructure does not redistribute objects to other computers automatically.

CORBA does not target web applications and provides no multi-user or web support.

Component Object Model (COM)

COM [Microsoft, 2012c] is a binary component standard that is available on Windows

operating systems. COM components can be implemented in multiple languages, e.g.,

in C/C++, Visual Basic, Delphi, and C#. Interfaces of components are specified in the

Microsoft Interface Description Language (MIDL). The contributors (servers) are stored

in the Windows Registry and the hosts (clients) retrieve them using the COM API. As

COM and CORBA are conceptually similar, their customization options are the same.

The Distributed Component Object Model (DCOM) extends COM to support

communication across computer boundaries. The distribution support of DCOM goes

beyond CORBA with the following capabilities:

Components cannot only interact with server-side components, but also with

components that are executed on the client. Such client-side components are

implemented with the ActiveX technology [Microsoft, 1996]. ActiveX components are

stored on the server and downloaded to the client on demand. Typical ActiveX

components are used to embed rich content into web applications, e.g., video, audio, or

PDF documents.

COM supports life-cycle management with reference counting, provided through the

AddRef and Release methods in the IUnkown interface, which must be provided by all

components. Reference counting is used for contributors (servers) as well as for

parameter values.

State of the Art

32

COM objects are organized in apartments that provide thread management. An

apartment controls how many threads are allowed to enter concurrently. In a single-

threaded apartment (STA) components are executed by a single dedicated thread; in a

multi-threaded apartment (MTA) a set of dedicated threads execute components, thus

the objects must do their own synchronization; in a thread-neutral apartment (NTA)

arbitrary threads can enter and execute. A process can contain STA, MTA, and NTA

objects, which can interact with each other.

COM does not provide any multi-user or web support.

Open Services Gateway initative (OSGi)

The Open Service Gateway initiative (OSGi) [OSGi Alliance, 2012a] is a Java-based

component standard. Interfaces of components are specified in Java and components

are called bundles. Contributors register their services in the Service Registry where

hosts can retrieve them. OSGi provides the same customization options as CORBA and

COM, but adds additional support for customization at startup time and at run time.

Services can be added and removed in the service registry while an application is

running; upon changes the service registry notifies hosts with events.

Similar to the ORB in CORBA, the OSGi Remote Services standard [OSGi

Alliance, 2012b] allows building a distributed service registry. In order to make a

service available for remote clients, a distribution provider creates an endpoint from the

interface of the registered service on the contributor side. The endpoint handles the

remote communication, e.g., as a web service or with Java RMI. To import the service

on the host side, a distribution provider creates a proxy and registers it in the service

registry of the host. Thus a host can retrieve remote services from the service registry in

the same way as local services, i.e., remote services are location transparent as well as

access transparent.

Similar to COM, OSGi uses semi-automatic life-cycle management for services (with

the getService and ungetService APIs), but unlike COM, OSGi uses garbage collection of

Java and thus the life-cycle management for arguments is automatic.

The distribution capabilities (thread management, reference semantics, and

synchronization) are similar to CORBA. However, as a distribution provider for an

OSGi service can create an endpoint that supports web services for communication, the

service is interoperable with other platforms that are not Java-based.

OSGi does not provide multi-user or web support.

SOFA Component Model

SOFA [Hnetynka and Plasil, 2006; Bures et al., 2006; Bures et al., 2007] is a component

model developed at the Charles University in Prague. The component model is

hierarchical as it distinguishes between primitive and composite components.

Primitive components are programmed, whereas composite components are

declaratively composed from other primitive or composite components.

Evaluation of Existing Technologies

33

Components are specified using the Meta-Object Facility (MOF) standard [OMG, 2006]

and communicate with each other using connectors. Connectors can use different

communication technologies such as procedure calls, messaging, streaming, or

communication via shared memory.

The SOFA runtime environment (SOFAnode) consists of a repository, which stores the

meta-data of components and the components' implementations, and it contains a

number of component containers, which provide the functionality for executing

components. Component containers are called deployment docks and can be

distributed across multiple computers. Thus SOFA supports component distribution.

Furthermore, SOFA supports dynamic reconfiguration by adding, removing, or

replacing components at run time. Even though the SOFA runtime is implemented in

Java, its concepts are language-independent and can be implemented in other

programming languages too.

Sofa does not provide multi-user or web support.

Managed Extensibility Framework (MEF)

MEF [Microsoft, 2010] is a component model based on .NET. Interfaces are specified in

a .NET language, such as C# or Visual Basic.NET. Hosts and contributors (called parts)

declare their provided interfaces (exports) and requested interfaces (imports) using

metadata.

The components’ metadata are retrieved by a discoverer (catalog) and stored in a

registry (container). The MEF composition engine matches provisions and requests

automatically to assemble an application. MEF’s customization options are similar to

those of OSGi, however, with MEF the end user can also add custom components, e.g.,

by copying component files to a folder in the file system. Such components are

discovered by the catalog and composed by the composition engine.

MEF targets desktop applications on a single computer, e.g., Microsoft Visual Studio,

and thus neither provides distribution support, multi-user support, or web support.

Plux

The following description of Plux covers the state of Plux before this thesis

[Wolfinger, 2010]. As Plux initially targeted only desktop applications, it did not

provide distribution, multi-user, or web support. Therefore, this description focuses on

the customization capabilities of Plux only.

Plux is a component model for dynamic plug-and-play composition. The composition

is done by the infrastructure and not by the components. It is plug-and-play because it

happens automatically. Components (extensions) declare their provisions (plugs) and

requests (slots) using metadata. Plux retrieves these metadata, matches provisions and

requests, and connects contributors to matching hosts. The composition is dynamic

because components can be added and removed at run time, i.e., Plux automatically

recomposes the application without restarting it. In contrast to any other component

State of the Art

34

platform, Plux keeps track of which hosts use which contributors, i.e., it maintains a

composition state that holds all extension instances and their connections. Hosts can

retrieve their contributors from the composition state and can modify the composition

using the Plux composition API. The customization capabilities of Plux are identical to

those of MEF, but as Plux components contain configuration metadata in addition to

composition metadata, Plux applications can also be customized by configuration.

Eclipse with Remote Application Platform (RAP)

Eclipse [Eclipse, 2006] is a component platform based on Java. Interfaces of

components are specified in Java. Components are called extensions and connect to

other extensions via extension points. Contributors register their services in the Eclipse

Registry from where hosts retrieve them. Eclipse provides the same customization

capabilities as CORBA, COM, and OSGi. In addition to that, Eclipse applications can be

customized by configuration, i.e., by changing parameter values in the XML metadata

of an extension.

Eclipse targets only desktop applications, but in combination with the Remote

Application Platform (RAP) [RAP, 2012], developers can generate web applications

from Eclipse desktop applications. RAP generates web controls with HTML and

JavaScript from Eclipse SWT widgets. The web controls are executed on the client and

communicate with business logic on the server. The distribution is limited as only the

user interface is transferred to the client (automatically by the infrastructure). Other

parts of the web application cannot be distributed.

As Eclipse with RAP is hosted in a Java EE server, the multi-user and web support is

similar to that of the Java Enterprise Edition (see below). However, as in RAP user

interfaces are implemented by the use of SWT controls, web page templates are not

available.

Browser Plugins

A Browser Plugin [NPAPI, 2012 and Oliphant, 1996] is an extension that is installed in

the web browser on the client. The plugin can modify a web application’s user

interface or display rich content, such as Adobe Flash animations or PDF documents.

However, browser plugins only extend the functionality of a web browser, but do not

extend the web application, which is accessed via the browser. Furthermore, browser

plugins are leafs from the perspective of composition and cannot be extended

themselves by additional plugins.

With Browser Plugins only the end user can customize the web application, and it can

only be customized on the client. However, unlike in all other web technologies, the

developer and administrator of a web application have no influence on which plugins

are installed on the client.

As Browser Plugins are always executed in the web browser on the client, they have no

distribution, multi-user, or web support.

Evaluation of Existing Technologies

35

Sockets

Sockets [Tanenbaum and Van Steen, 2007 pages 141-142] are a communication

mechanism between processes on one or several computers. They are communication

endpoints that communicate by sending and receiving byte streams, usually based on

the TCP protocol [Postel, 1981] or the UDP protocol [Postel, 1980]. Programs must

serialize and deserialize their data in order to transmit them via sockets.

Developers can customize an application in defined parts, by connecting these parts to

different sockets. Sockets can be used to distribute parts of a web application across

multiple servers and even to a web client using web sockets. As the usage of a socket is

independent of the other socket's location, distribution is location transparent.

In socket-based web applications, only parts that actually use a socket can be

distributed. Other parts that use local procedure calls (e.g., between components)

cannot be distributed. Thus, with sockets only defined parts of the application can be

distributed.

Sockets are a platform-independent mechanism, i.e., parts of socket-based web

applications can be distributed across different platforms.

As sockets are only a means of communication, they do not provide multi-user or web

support.

Common Gateway Interface (CGI)

The Common Gateway Interface [Robinson and Coar, 2004] is a standard for

dynamically generated web pages. A web server with CGI starts a new process for

each request, which takes the request’s parameters as input and generates the response

message as output. A CGI web application can be customized in defined parts through

composition on the web server. The administrator can modify the mapping of URLs

and CGI scripts at startup time. CGI does not provide support for distribution or

multiple users. However it provides web support. Depending on a request’s URL, the

web server automatically calls the CGI script that is assigned in the configuration. Thus

the CGI script does not have to handle network communication but can simply read

the input from the standard input stream and write the output to the standard output

stream.

Server Side Includes (SSI)

Server Side Includes [The Apache Software Foundation, 2013] are a standard for simple

web templates. For each request SSI replaces placeholders in the web page template

with values from environment variables or simple library functions, e.g., the current

date and time. An SSI web application can be customized in the same way as CGI. In

addition to that, the administrator can customize by configuration, i.e., by changing the

web page templates at deployment time and by setting the environment variables at

startup time. The web support of SSI goes beyond CGI, because of the web page

templates.

State of the Art

36

Java Servlets

Java Servlets [Mordani, 2009] are a standard for dynamically generated web pages

(similar to CGI) with scripts that are implemented in Java. Servlets can be customized

exactly in the same way as CGI. Java Servlets do not support distribution. However

they provide multi-user and web support. In contrast to CGI and SSI, which are

stateless, Servlets can keep a user state between consecutive requests in a session.

Furthermore, Servlets support HTTP parameters that can be retrieved uniformly,

regardless of whether they are passed in the URL or in the message body. The user

state of a session can be kept in main memory, on disk, or even on multiple servers to

balance the load.

Server-side Scripting Languages

PHP: Hypertext Preprocessor (PHP) [The PHP Group, 2012] is a server-side scripting

language for dynamic web pages that are rendered from web page templates. In PHP

the web page templates can contain script code that is evaluated for each request and

the results replace the placeholders in the template. The customization options of PHP

are the same as in SSI. PHP does not support distribution. The multi-user and web

support in PHP is similar to that of Java Servlets, plus the support for web page

templates.

Active Server Pages (ASP) [Microsoft, 2012j] and Java Server Pages (JSP)

[Delisle et al., 2006] are further representatives of server-side scripting languages with

similar capabilities as PHP.

Java Enterprise Edition / ASP.NET

Java Enterprise Edition (Java EE) [DeMichiel and Shannon, 2013] is a standard for a

web application framework. In contrast to server-side scripting languages, the

business-logic is not embedded in the web page templates, but encapsulated into

business-logic components (Enterprise Beans). Moreover, the user interface is

encapsulated in web controls (JavaServer Faces [Burns, 2013b]). Web controls are

reusable Java components that can be programmed in an object-oriented manner just

like business-logic components. Web controls are embedded into web pages and are

dynamically rendered into HTML and Javascript on each request.

The customization capabilities for Java EE web applications are similar to those of

server-side scripting languages.

Java EE provides support for distribution of defined parts across servers (e.g., the

database server can run on a different computer than the web server) or even across

servers and clients (e.g., web controls on the client can connect to the server application

using AJAX). As distributed web components are implemented with RMI or web

services, they are location transparent and access transparent, i.e., developers do not

have to care on which computer a component is located, and local components can be

accessed in the same way as remote components. The lifetime management of service

Evaluation of Existing Technologies

37

objects and argument objects is done automatically in Java EE. If web services are used

for distribution, Java EE is interoperable with other platforms.

The multi-user support and the web support of Java EE is the same as in Java Servlets,

as Java Servlets are part of Java EE. In addition to that, Java EE supports web page

templates (JavaServer Pages) and web controls (JavaServer Faces).

ASP.NET [Microsoft, 2012k] is a web application framework for the .NET platform

with essentially the same capabilities as Java EE. However, the distribution support in

ASP.NET (.NET Remoting) goes beyond Java EE (Java RMI) with respect to reference

identity and object synchronization.On the other hand, .NET Remoting is not

interoperable, i.e., it is limited to the .NET platform, and it requires that all remote

objects inherit a special base class, whereas in Java RMI it is sufficient to implement an

interface.

Portals

A Portal is a web-based application that is composed from multiple user interface parts

which are embedded from other web sites. Portals are used to aggregate web content

from different sources for personalized web sites. Portlets [Hepper, 2008] is a

standardized Java technology for implementing Portals. A Portlet is a pluggable user

interface component. It processes requests and generates dynamic HTML and

JavaScript content. A Portlet container runs Portlets, i.e., it provides services such as

lifetime management, persistence, and preferences for Portlets. The web page of a

Portal is generated from all Portlets in the container.

The customization options of Portals are similar to those of Eclipse with RAP, but with

two differences: Portals can only be customized in defined parts, i.e., Portlets can be

added, arranged, and removed. On the other hand, a Portal can also be customized by

end users, which Eclipse with RAP cannot.

Portlets can be distributed across multiple web servers. The distribution of Portlets is

controlled by the administrator, as he installs the Portlet on a web server. Portlets are

based on open web technologies, such as HTML and JavaScript, and therefore are

interoperable across different platforms.

Portlets provide full multi-user support, i.e., user-specific state, configuration and

composition (for users, groups, and hierarchical groups), as well as user-specific

customizability by developers, administrators, and end users.

Portlets provide similar web support as Eclipse with RAP, but they cannot retrieve

HTTP parameters from a user request, because Portlets are retrieved by the Portlet

server with a separate request instead of the original user request.

2.3.3 Deficiencies of Existing Technologies

To develop a component-based distributed multi-user web application, developers

need a technology that provides support for all relevant capabilities, i.e., support for

State of the Art

38

componentization, support for distribution, multi-user support, and web support. As

this chapter shows, none of the existing technologies provides support for all of these

capabilities. A possible solution is to choose a combination of technologies in order to

cover as many of the required capabilities as possible. For example, a developer could

combine the component technology OSGi, the web technology Java EE, and the web

component technology Browser Plugins. The developer could build the component-

based web application with OSGi and thus make it customizable by composition on

the web server. Using OSGi remote services, he could distribute parts of the web

application across multiple computers. Java EE would provide support for building the

user interface and multi-user support with sessions. In order to integrate components

from the web client, the developer could use Browser Plugins.

A developer that applies this strategy would have to learn and master three different

technologies and would still face several limitations:

End-user customization is limited to browser plugins. Thus it is limited to a small

subset of the web application’s components. Furthermore browser plugins are limited

in composition, they cannot integrate seamlessly with components on the web server,

e.g., to access data components of the web application’s backend. Finally, browser

plugins need to be implemented in a different programming language as all other

components.

The distribution of components is limited in several ways: client-side components

cannot be moved from the client to the server or vice versa because they are

implemented in different languages and for different component models than server-

side components. Client-side components are implemented, for example, in C/C++ as

Browser Helper Objects for the Internet Explorer; server-side components are

implemented in Java as OSGi components. Furthermore, in order to change a local

OSGi component into a remote OSGi component, the developer must create a

distribution provider. If such a provider is not available for a component, it cannot be

accessed remotely. Moreover, the developer must be aware whether he accesses a local

or a remote component, e.g., because remote components have different reference

semantics than local components and require different thread management and data

synchronization.

The multi-user support is limited as only Java EE provides multi-user capabilities but

OSGi does not. As the composition is done by OSGi, the composition is maintained for

all users in common. Therefore each user must have the same composition and cannot

integrate his own components without affecting other users. Only the web support is

sufficient, as Java EE provides all the required capabilities.

Chapter 3

39

3 The Plux Component Model

This chapter presents the Plux component model. The metadata standard

specifies how to declare components. Components are called extensions and use

the metaphor of slots and plugs: extensions, which declare a slot, want to use

other extensions; extensions, which declare a plug, provide a service to other

extensions. The deployment standard specifies an exchangeable discovery

mechanism, whereby extensions are self-contained, so that no separate

configuration files are necessary for composition. The composition standard

specifies how Plux provides full knowledge about the connections between

extensions by maintaining a composition state, how Plux performs the

composition automatically instead of programmatically, and how composition

libraries can adapt the automatic composition process. The interaction standard

specifies how extensions can communicate and exchange data in a dedicated

runtime thread. The customization standard specifies how extensions can be

configured with a common settings model.

The Plux component model specifies metadata, deployment, composition, interaction,

and customization standards for extensible and customizable applications that are

composed from plugins. Plux supports plug-and-play composition to compose

programs from plugins without programming or configuration effort. Plux also uses

dynamic composition, i.e., it allows reconfiguring a program by adding and removing

components while the program is running. The Plux component model was originally

published in the dissertation of Wolfinger [Wolfinger, 2010]. As we improved and

extended the Plux component model, this chapter presents its current state.

Plux distinguishes itself from other plugin component models [Birsan, 2005], such as

CORBA, COM+, Eclipse, or OSGi, by the following key characteristics: in Plux, a

central composer automatically connects components and maintains their connections

in a composition state; it uses events to notify components about changes in the

composition state; components are discovered dynamically using an exchangeable

discovery mechanism; components can be configured with dynamically discovered

settings.

Plux replaces programmatic composition with automatic composition. In

programmatic composition, the composition logic is implemented in the components

The Plux Component Model

40

themselves. Components register their provided services in a global registry, while

other components either query the registry to retrieve registered components, or they

listen to change events sent by the registry, to integrate registered components

programmatically. The drawback of this solution is that every host has to implement

the retrieval of contributors from the registry itself. This results in coding overhead and

code duplication. Furthermore, if each host implements this mechanism on his own

way, the composition implementation might become inconsistent and not uniform. In

Plux, the composition mechanism is not implemented in the components, but rather in

a central composer of the Plux runtime, which performs the composition automatically.

Automatic composition means that the components declare their requirements and

provisions using metadata; the composer uses these metadata to match requirements

and provisions and to connect matching components automatically. This minimizes

coding effort and unifies the composition mechanism. During composition, Plux sends

composition events to the affected components so that they can react.

At any time, Plux maintains the current composition state, i.e., it keeps track of which

components are connected to which others, and also stores an arbitrary number of

named labels on connections (which are called tags). As components can retrieve the

composition state, they do not need to store references to the components they use.

Discovery is the process of detecting new components and extracting their metadata.

Unlike in other plugin systems, the discovery mechanism is not an integral part of

Plux, but is a plugin itself. This makes the mechanism replaceable. Components are

configured by settings that are provided by the discovery mechanism, which allows

reconfiguring components dynamically. The following subsections cover those

characteristics in more detail.

3.1 Metadata Standard

Plux uses the metaphor of extensions that have slots and plugs (Figure 3.1). All of them

are specified using metadata. An extension is a component that provides services to

other extensions and uses services provided by other extensions. If an extension wants

to use a service of some other extension it declares a slot. Such an extension is called a

host. If an extension wants to provide its service to other extensions it declares a plug.

Such an extension is called a contributor. Related extensions can be packaged as a plugin

so that they can be deployed as a single unit.

Figure 3.1: Metadata for Plux extensions with slots and plugs

Metadata Standard

41

Slots and plugs are identified by names. A plug matches a slot, if their names match. If

so, Plux will try to connect the plug to the slot. A slot represents an interface, which has

to be implemented by a matching plug (Figure 3.2). The interface is specified in a slot

definition. A slot definition has a unique name, optional parameters whose values must be

provided by the contributors and can be retrieved by the hosts, as well as optional tags

that can be set in the composition state and can be retrieved by the hosts and the

contributors. The names of slots and plugs refer to the respective slot definition.

Multiple slot definitions can be packaged as a contract.

The means to provide metadata is customizable in Plux. The default mechanism

extracts metadata for plugins and contracts from .NET attributes in assembly files.

Assembly files are DLL files that contain .NET classes, metadata, and resources.

.NET attributes are pieces of information that can be attached to .NET constructs, such

as classes, interfaces, methods, or fields. At run time, the attributes can be retrieved

using reflection [Ecma, 2010].

Plux specifies the following custom .NET attributes (see examples from Listing 3.1 to

Listing 3.3): the SlotDefinition attribute to declare an interface as a slot definition, the

Extension attribute to declare a class as an extension, the Slot attribute to declare

requirements for contributors in hosts, the Plug attribute to declare provisions in

contributors, the ParamDefinition attribute to declare required parameters in slot

definitions, the Param attribute to declare provided parameter values in contributors,

and the TagDefinition attribute to declare optional tags in slot definitions. Plux can use

arbitrary objects as parameter values, however the default metadata mechanism of

.NET attributes limits parameter values to compile-time constants.

Let us look at an example. Assume that we have a workbench implemented as a host

extension working with views that are implemented as contributors. The workbench

displays the view’s titles in its view menu and their controls within the workbench

window. Figure 3.3 on the next page shows the user interface of the workbench with

an email and a payroll view, as well as the corresponding extensions with plugs and

slots. The Workbench extension is plugged into the Application slot of the Plux core and

acts as a host for the contributor extensions Email and Payroll, which are views for the

workbench that are plugged to it via a View slot and tagged with a Menu tag.

Figure 3.2: Metadata of a slot and a plug named "A" defined in a slot definition

The Plux Component Model

42

In order to implement this example, we need to define the View slot into which the

views can plug, i.e., we create the interface IView and mark it with the SlotDefinition

attribute (Listing 3.1). Each view contributor must provide two different titles: a static

title for views that are currently not opened, and a dynamic title for opened views. The

ParamDefinition attribute Title ensures that view contributors must provide a static title

as a parameter value. The static title is retrieved as a parameter (and not as a part of the

interface) because the workbench needs to retrieve the title without instantiating a

view to show the title of available views in its view menu, e.g., "Email". The dynamic

title can be retrieved with the GetTitle method of the interface and thus can reflect the

currently displayed content in the caption of the view, e.g., "Email - Inbox (2 new

messages)". To retrieve the user control of the view, the workbench calls the GetControl

method. In order to make the menu of the workbench customizable, we use the

TagDefinition attribute to define a tag Menu. Through this tag, the workbench

determines whether it must show the static title of a view in the view menu: view

contributors that are tagged with Menu are shown in the menu, others are not.

Next, we implement a contributor for the View slot. Listing 3.2 shows a view for emails.

The Extension attribute marks the class EmailView as an extension and the Plug attribute

View marks it as a contributor for the View slot. As required by the slot definition, the

class implements the interface IView and provides a value for the parameter Title.

Finally, we implement the workbench extension (Listing 3.3). To make it a host for

views, we specify a View slot using the Slot attribute. As the workbench is also a

contributor for the Application slot of the Plux core, we apply the Plug attribute

Application and implement the corresponding IApplication interface that defines the

[SlotDefinition("View")]
[ParamDefinition("Title", typeof(String))]
[TagDefinition("Menu")]
interface IView {
 String GetTitle();
 Control GetControl();
}

Listing 3.1: Interface and metadata for a slot definition

Figure 3.3: User interface and extensions of a workbench application

Deployment Standard

43

method Start. At startup, Plux creates an instance of the workbench, connects it to its

core, and calls the workbench's Start method. The implementation of the class

Workbench is covered in Section 3.3 Composition Standard.

To complete the example, we compile the slot definition for views (Listing 3.1) into a

contract assembly Workbench.Contract.dll, the workbench extension (Listing 3.3) into a

plugin assembly Workbench.dll, and the view extensions for email (Listing 3.2) and

payroll (implementation not shown) into the plugin assemblies Email.dll and Payroll.dll.

3.2 Deployment Standard

Slot definitions are deployed in contracts and extensions are deployed in plugins, i.e.,

both are deployed in DLL assembly files. The Plux discovery mechanism detects

contracts and plugins and extracts the metadata of slot definitions from a contract and

the metadata of extensions from a plugin. Next, it notifies the Plux core about

discovered contracts and plugins, which stores them to retrieve their metadata during

the composition of the application (see Section 3.3 Composition Standard).Vice versa,

the discoverer also notifies the Plux core when contracts and plugins are removed.

Plux supports dynamic reconfiguration, i.e., plugins can be added and removed at run

time without restarting the application.

In order to make the discovery mechanism customizable, it is implemented as an

extension itself. For this, the Plux core provides a Discovery slot for discoverer

extensions, beside the Plux core’s Application slot for applications. The default

Discoverer extension watches one or more directories for newly added or removed

assembly files and reads the metadata from their attributes. Figure 3.4 on the next page

shows an example with a Discoverer extension that is plugged into the Discovery slot of

the Plux core. The Discoverer extension declares two slots: a Detector slot for

[Extension]
[Plug("Application")]
[Slot("View")]
class Workbench : IApplication {
 void Start() { /* not shown */ }
 ...
}

Listing 3.3: Implementation and metadata for a host extension

[Extension]
[Plug("View")]
[Param("Title", "Email")]
class EmailView : IView {
 String GetTitle() { /* not shown */ }
 Control GetControl() { /* not shown */ }
}

Listing 3.2: Implementation and metadata for a contributor extension

The Plux Component Model

44

contributors, which detect newly added or removed assemblies, and an Analyzer slot

for contributors, which extract metadata from detected assemblies. The

FilesystemDetector contributor monitors directories in the file system and detects DLL

assembly files when they are copied into a directory or when they are deleted from

there. The AssemblyAnalyzer contributor retrieves metadata from custom attributes of

detected assemblies. In addition to the FilesystemDetector and the AssemblyAnalyzer,

Plux provides further detectors and analyzers, e.g., an XmlDetector that monitors

entries in an XML file that specify the assemblies to be detected, and a DatabaseAnalyzer

that retrieves metadata for assemblies from a database. The Discoverer extension can

use multiple detectors and analyzers at the same time.

Let us get back to the workbench example from the previous section. When we copy

the contracts into a Contracts directory and the plugins into a Plugins directory

(Figure 3.5 left), the FilesystemDetector detects the newly added files and the

AssemblyAnalyzer extracts the metadata for the slot definitions and extensions from the

assembly files (Figure 3.5 right).

Figure 3.4: Discoverer extension plugged into the Discovery slot of the Plux core

Figure 3.5: Metadata extracted by the discoverer from the contract

and the plugins of the workbench application

Composition Standard

45

3.3 Composition Standard

Composition is the process that matches the requirements of hosts with the provisions

of contributors. In Plux, this is done by the composer, which assembles a program from

extensions provided by the discoverer. When the discoverer detects a new extension,

the composer integrates it into the program. Vice versa, when the discoverer detects

that an extension was removed, the composer removes it from the program.

Integrating an extension means that the composer searches the composition state

(Section 3.3.1) for slots that match the plugs of the new extension. If such slots are

found, the composer plugs the extension, i.e., it creates an instance of the extension and

connects its plugs to all matching slots in the composition state. Removing an extension

means that the composer searches the composition state for slots where instances of the

extension are plugged. If such slots are found, the composer unplugs the extension, i.e.,

it disconnects the plugs of the extension from these slots and destroys the instance (see

Section 3.3.2 Composition Operations and Section 3.3.4 Automatic Composition).

3.3.1 Composition State

In Plux, all connections between components are established by the composer.

Therefore the composer has full knowledge about the instantiated extensions, their

slots and plugs as well as about their connections. This information is called the

composition state. If a host wants to use its plugged contributors, it can simply retrieve

them from the composition state. For every instantiated extension, the composition

state holds the meta-object of the extension, the meta-objects of its slots and plugs as

well as a reference to the corresponding extension object (Figure 3.6). The extension

object is the extension’s implementation, i.e., an instance of the class that was marked

with the Extension attribute. For every slot, the composition state keeps track which

plugs are connected to it (retrievable via the PluggedPlugs property); and for every plug

the composition state keeps track of to which slots it is connected (retrievable via the

PluggedInSlots property).

Figure 3.6: Meta-objects for instantiated extensions in the composition state

The Plux Component Model

46

Let us show, by means of the workbench example, how the composition state can be

used to create a window menu that lists the titles of all opened views (Figure 3.7). The

window menu is used to set the focus to an open view and to bring it to the

foreground. For each plugged view the workbench opens the view's control in a child

window and it closes the child window when the view contributor is unplugged. How

this is done is covered in Section 3.3.3 Composition Events later in this chapter.

Listing 3.4 shows how the workbench creates the window menu with entries for

opened views, i.e., how it creates a menu entry for each plugged view contributor.

When the composer creates the Workbench extension, it passes the extension's meta-

object to the constructor, which uses it to retrieve the meta-object of the View slot.

When the user opens the window menu the ShowWindowMenu method is called. This

method retrieves the plug meta-objects of the view contributors that are plugged into

the View slot using the slot's PluggedPlugs property (Figure 3.6). For each retrieved plug

we retrieve the extension object of the contributor. As Plux ensures that only

contributors are plugged that implement the interface IView, which is required by the

slot definition, we can safely cast the contributors extension object to IView. Finally, we

Figure 3.7: Window menu in the user interface of the workbench application

[Extension]
[Plug("Application")]
[Slot("View")]
class Workbench : IApplication {
 Slot viewSlot;

 Workbench(Extension e) { viewSlot = e.Slots["View"]; }

 void ShowWindowMenu() {
 Menu windowMenu = ...
 foreach (Plug p in viewSlot.PluggedPlugs) {
 var view = (IView) p.Extension.Object;
 String title = view.GetTitle();
 windowMenu.Add(title, p);
 }
 windowMenu.Show();
 }
}

Listing 3.4: Retrieving meta-objects for plugged contributors

from the composition state

Composition Standard

47

retrieve the dynamic title from the extension object and use it as a label for the menu

entry. Additionally, we store the plug meta-object so that we can later use it to switch

to the corresponding view when the user clicks the menu entry.

Besides the plugged relationship, the composition state also maintains the tagged

relationship. A tag can be set between a plug and a slot, regardless of whether that

plug is plugged into the slot. That means that contributors can be tagged before a host

uses them, i.e., before they are plugged. This can be used to introduce contributors to a

host, e.g., to make a view contributor available in the workbench menu before it is even

instantiated. Contributors can also be tagged when the host already uses them, i.e.,

when they are already plugged. This can be used to mark one of the plugged

contributors, e.g., as the current foreground view in the workbench.

Figure 3.6 shows how the contributors that are plugged in a slot can be retrieved from

the composition state, either via the PluggedPlugs property of a slot, or via the

PluggedInSlots property of a plug. Similarly, for every slot, the composition state keeps

track of which plugs are tagged with a tag (retrievable via the slot’s Tags property); and

for every plug, the composition state keeps track of in which slots it is tagged

(retrievable via the plug’s Tags property).

In our workbench example, the Menu tag can be used to customize which views should

be visible in the view menu, so that the menu presents available views and lets the user

open them by clicking the menu entries. However, as the workbench shows only those

views in its view menu which are tagged with the Menu tag, users can customize the

view menu by tagging or untagging view contributors.

Listing 3.5 shows how the workbench uses the Menu tag. By setting AutoTag="Menu"

as a property of the View slot, we ensure that the composer automatically tags all

discovered view contributors (Section 3.3.4 Automatic Composition). When the user

[Extension]
[Plug("Application")]
[Slot("View", AutoTag="Menu")]
class Workbench : IApplication {
 Slot viewSlot;

 Workbench(Extension e) { viewSlot = e.Slots["View"]; }

 void ShowViewMenu {
 Menu viewMenu = ...
 foreach (Tag t in viewSlot.Tags["Menu"]) {
 String title = (String) t.Plug.Param["Title"].Value;
 viewMenu.Add(title, p);
 }
 viewMenu.Show();
 }
}

Listing 3.5: Retrieving meta-objects for tagged contributors

from the composition state

The Plux Component Model

48

opens the view menu, the workbench retrieves the tagged contributors from the view

slot using the Tags property with the tag name as a filter. For each tagged contributor,

we retrieve its static title from the Title parameter value of the plug. Finally, we add a

menu entry with the title as a caption to the view menu and store also the plug meta-

object so that we can later open the corresponding view when the user clicks the menu

entry (see UI-bound Composition Behaviors in Section 3.3.6).

In addition to the meta-objects and relationships explained in this section, the

composition state holds further composition data. These will be explained in the next

Section 3.3.2 Composition Operations when the corresponding concepts are presented.

3.3.2 Composition Operations

In Plux, the composer assembles an application from extensions and stores them

together with their connections in the composition state. For this purpose it uses

several composition operations, which we describe in this section by means of the

workbench example.

When Plux starts an application, the composition state contains only the Plux core

extension, which provides an Application slot as a root for composition (Figure 3.8

Before). At startup, contributors with an Application plug are composed here.

Create

Before an extension can be composed, it must be created. To create an extension means

to create the extension meta-object as well as the related slot and plug meta-objects

(Figure 3.8 After) using the metadata provided by the discoverer. The fact that the

workbench meta-objects in Figure 3.8 are shown with dashed lines indicates that the

extension was not yet activated (see operation Activate), i.e., only the meta-objects exist,

but the extension object was not yet instantiated.

Plug

Hosts can only use contributors that are plugged into them. To plug a contributor

means to connect a plug with a slot in the composition state. The meta-objects of

plugged contributors can be retrieved from the composition state using a slot's

PluggedPlugs property. The host can retrieve the extension object of a plugged

contributor and can call methods via the interface specified in the slot definition.

Figure 3.9 shows the composition state before and after the Plug operation. Please note

that the extension object of the workbench is still not instantiated.

Figure 3.8: Composition state before and after the Create operation

Composition Standard

49

Activate

To activate an extension means to instantiate its extension object. If a host retrieves the

extension object from the extension's meta-object using the Object property, the Activate

operation is triggered automatically. Once a contributor has been activated, the host

can call methods on the contributor's extension object via the interface of the slot to

which it is connected. Whether an extension is activated or not can be retrieved from

the composition state using the extension's IsActivated property. Figure 3.10 shows an

example: the unactivated extension (Before) is drawn with dashed lines, whereas the

activated extension (After) is drawn with solid lines. The fact that the slot meta-object

is crossed out indicates that the slot is yet closed (see operation Open).

Open

Slots can be open or closed. Note that contributors can only be plugged or tagged to

open slots. To open a slot means to mark it as open in the composition state. Whether a

slot is open or closed can be retrieved from the composition state using the slot's

IsOpen property. Figure 3.11 shows an example: the closed slot is struck through

(Before), whereas the open slot is not (After).

Tag

To tag a slot-plug pair means to store a named relation for that pair in the composition

state. A slot-plug pair can have multiple tags, namely all that were defined in the slot

definition. Tags can be set even when the plug is not yet connected to the slot. The

meta-object of tags can be retrieved from the composition state using a slot's Tags

property. Whether a tag is set between a slot and a plug can be retrieved from the

Figure 3.9: Composition state before and after the Plug operation

Figure 3.10: Composition state before and after the Activate operation

Figure 3.11: Composition state before and after the Open operation

The Plux Component Model

50

composition state using the slot's IsTagged method. Figure 3.12a shows an example of a

contributor that is tagged with Menu but not plugged, Figure 3.12b shows a contributor

that is both plugged and tagged.

Destroy

To destroy an extension means to remove its meta-object from the composition state

(Figure 3.8, Before). To destroy an extension includes its deactivation (operation

Deactivate), if it was activated.

Unplug

To unplug means to remove a plug as a contributor for a slot in the composition state

(Figure 3.9, however with Before and After swapped). Unplugged contributors are

candidates for garbage collection (Section 3.3.4 Automatic Composition), i.e., the next

time when the composer is idle, it checks if the unplugged contributor is connected to

any other slot. If it is neither plugged nor tagged to any slot anymore, the composer

destroys the contributor (operation Destroy), if it is still tagged to a slot but not plugged

to any slot, the composer deactivates the contributor (operation Deactivate).

Deactivate

To deactivate an extension means that its slots are closed (operation Close) and that its

extension object is disposed and released for garbage collection. (Figure 3.8, After). As

the extension object of a deactivated extension must not be used anymore, deactivating

an extension includes unplugging the extension from all hosts where it was plugged

before the extension's slots are closed and the extension object is disposed.

Close

To close a slot means to mark it as closed in the composition state (Figure 3.11,

however with Before and After swapped). As Plux allows plugged and tagged

contributors only in open slots, to close a slot includes untagging (operation Untag)

and unplugging (operation Unplug) all contributors (not shown in Figure 3.11).

Figure 3.12: Composition state before and after the Tag operation

Composition Standard

51

Untag

To untag means to remove the named relation between a slot and a plug from the

composition state (Figure 3.12, however with Before and After swapped). Similar to the

Unplug operation, untagged contributors are candidates for garbage collection if they

are not plugged to any slot anymore.

3.3.3 Composition Events

For each composition operation, the composer sends the following events to the

affected components (see below): a CanCompose event asks the receiver whether the

operation can be performed, if one receiver denies the request, the composer cancels

the operation; a Composing event notifies that the operation is about to be performed so

that receivers can prepare for the upcoming change; a Composed event notifies that the

operation has been completed so that receivers can react to the change. Although

composition events are primarily useful for hosts, other components, such as

contributors or system tools, can also receive the events. Hosts can register for events

on their extension and slot meta-objects, contributors can register for events on their

plug meta-objects, and system tools can register for global events on the composer.

For each composition operation, there is a specific variant of the CanCompose,

Composing, and Composed events, e.g., CanPlug, Plugging, and Plugged for the Plug

operation. Figure 3.13 lists the events for all composition operations and shows where

receivers can register for them.

In the workbench example, we use the composition events of the plug and unplug

operations to open and close views. However, before we show how this is done, we

modify our workbench, in order to make the arrangement of views customizable. We

Figure 3.13: Composition events for the Plux composition operations

The Plux Component Model

52

factor out the view arrangement logic from the Workbench extension and introduce an

additional slot for containers instead. The views are now arranged by a contributor for

the Container slot. Figure 3.14 shows two examples for container contributors: the

MdiContainer contains the original logic, which arranges the views as child windows;

the TabContainer is an alternative which arranges the views on tabs.

Listing 3.6 shows the modified version of the workbench with the Container slot and

how it handles the composition events for the View slot in order to open and close

views when they are plugged and unplugged. In order to do so, it registers event

handler methods for the CanPlug, the Plugged, and the Unplugging events in the slot

attribute for the View slot.

Please note that in contrast to previous implementations of the workbench, the

Workbench class inherits from the base class ExtensionBase now and thus does not need

to store references to the meta-objects of its slots itself, but retrieves them via the Slots

property in the base class.

As the workbench can only arrange views if a container is plugged, it registers the

IsContainerPlugged method as an event handler for the View slot's CanPlug event. The

event handler denies plug operations for views if no container is present and writes a

log message. After a container has become available, the workbench is ready for views.

As soon a view is plugged the workbench opens it. For this, it registers the OpenView

method as an event handler for the View slot's Plugged event. The event handler

retrieves the plugged container via the Container slot and calls the container's Open

Figure 3.14: Customizable view arrangement in the

workbench example using containers

Composition Standard

53

method with the currently plugged view as an argument. Just before a view is

unplugged, the workbench closes it. For this, it registers the CloseView method as an

event handler for the View slot's Unplugging event. When invoked, the event handler

closes the view in the container.

In the methods OpenView and CloseView, we retrieve the container without even

checking if a container is plugged, because the CanPlug event handler ensures that

views can only be plugged once a container is plugged. Please note, that the

implementation in Listing 3.6 is not sufficient for all situations, e.g., the workbench

does not handle the situation where the container is unplugged while views are

plugged. A solution for this problem is shown in a further improved implementation

of the workbench in Section 3.3.5 Programmatic Composition.

3.3.4 Automatic Composition

Automatic composition is the process performed by the composer where new

extensions are created and connected (see Composition Process below), or extensions

are disconnected and destroyed (see Decomposition Process below).

Listing 3.6: Handling CanPlug, Plugged, and Unplugging composition events

[Extension]
[Plug("Application")]
[Slot("View", AutoTag="Menu", CanPlug="IsContainerPlugged",
 Plugged="OpenView", Unplugging="CloseView")]
[Slot("Container")]
class Workbench : ExtensionBase, IApplication {

 bool IsContainerPlugged(CompositionEventArgs args) {
 if (Slots["Container"].PluggedPlugs.Count == 0) {
 args.Logger.Write(
 "View denied because no container is plugged.");
 return false;
 }
 return true;
 }

 IContainer Container {
 get { return (IContainer)
 Slots["Container"].PluggedPlugs[0].Extension.Object; }
 }

 void OpenView(CompositionEventArgs args) {
 Container.Open((IView) args.Plug.Extension.Object);
 }

 void CloseView(CompositionEventArgs args) {
 Container.Close((IView) args.Plug.Extension.Object);
 }
}

The Plux Component Model

54

Composition Process

The composition process defines how extensions are composed to a program, i.e., it

creates extensions and connects them to other extensions. The composition process is

divided into composition sequences. A sequence comprises the composition operations

that are necessary to compose one host with all contributors that are available for the

slots of this host, i.e., each composition sequence makes one extension ready for use. In

a composition sequence, the composer performs the following composition operations

in the given order: (1) it activates the host, (2) opens the first slot of the host, (3) creates

the contributors for this slot, (4) tags them with the specified tags, and (5) plugs them

into the slot. If the host has multiple slots, the composer composes them one after

another. If it has no slots, the sequence is completed after activating the host.

Figure 3.15 shows the composition sequence in which the composer composes the

Workbench extension, i.e., the Workbench extension is the host and the Email extension is

the contributor. In this sequence the composer activates the Workbench host, opens its

View slot, creates the Email contributor, tags it with the Menu tag, and finally plugs it

into the View slot. Now the Workbench is completely composed and ready for use.

In automatic composition, the order of the composition operations in a composition

sequence cannot be changed. However, which composition operations should be

performed automatically and which should not can be configured globally on the

composer or individually for each slot and plug. Thus, depending on the configuration

of the composer or of a meta-object, a composition sequence performs or skips a

composition operation. The default is that automatic composition is enabled for all

composition operations, except for the Tag operation. To enable automatic composition

Figure 3.15: Composition sequence comprising the composition operations

that compose a host with a contributor

Composition Standard

55

for the Tag operation, the AutoTag property of a slot needs to be set, either in its

declaring attribute or in its meta-object. As the View slot of the Workbench specifies

AutoTag="Menu" in its slot attribute (Listing 3.6), the Menu tag is set during automatic

composition. To disable automatic composition for a composition operation, the

corresponding composition property of the composer or of a meta-object needs to be

disabled. For example, setting AutoOpen=false for a slot, disables the Open operation in

a composition sequence for this slot. Of course, as contributors can be tagged and

plugged only into open slots, disabling the Open operation for a slot causes the

operations Tag and Plug to be skipped in the composition sequence, too. However, if

automatic composition is enabled for the Tag and Plug operations, the composer

automatically performs them as soon as the slot gets opened later

(see 3.3.5 Programmatic Composition).

Figure 3.16 shows the composition properties that can be set to enable or disable

automatic composition for a certain composition operation, either globally for all slots

and plugs or individually for specific slots and plugs. Automatic composition for the

operations Create and Activate cannot be disabled.

After a composition sequence is completed, the composer is idle until a new

composition sequence is triggered. In automatic composition, a composition sequence

is triggered either when a host retrieves the extension object of a not yet activated

contributor (see Host-triggered Composition) or when the discoverer adds a new

extension (see Discoverer-triggered Composition).

Host-triggered Composition

In host-triggered composition, the composer starts a composition sequence, when a

host tries to retrieve the extension object of a not yet activated contributor. As the new

composition sequence is started for the accessed contributor, this contributor gets

composed just in time before the extension object is returned to the host. Please note,

that in this context, the accessed contributor is now the host to be composed, i.e., it is

the extension that gets activated and whose slots get filled with further contributors.

With host-triggered composition, Plux ensures that a contributor always is activated

and its slots are filled when it is accessed by a host.

Figure 3.16: Composition properties to enable or disable automatic

composition for specific composition operations

The Plux Component Model

56

When a Plux application is started, the composition starts with the composition

sequence for the Plux core. The Plux core listens to the Plugged event of its Application

slot and retrieves the extension object of the contributor when it is plugged. Thereby

the Plux core triggers a composition sequence for the newly plugged contributor.

Listing 3.7 shows the event handler for the Plugged event at the Application slot of the

Plux core retrieving the extension object of its contributor. When it calls the

contributor's Start method, the contributor is already composed.

Figure 3.17 shows the composition process for the workbench example. In the

bootstrap composition sequence 1, the Plux core is the host to be composed. The

composer activates the Plux core and fills the Application slot. When the Plux core

retrieves the extension object of the Workbench contributor in response to the Plugged

event in sequence 1 (i.e., while composition sequence 1 has not yet completed),

sequence 2 is triggered as a subsequence of sequence 1. As sequence 2 is a subsequence

of sequence 1, sequence 2 completes before sequence 1.

In sequence 2, the Workbench is the host to be composed and the Email view is the

contributor. When the Workbench retrieves the extension object of the Email view in its

Plugged event handler, it triggers sequence 3 as a subsequence of sequence 2. In

sequence 3, the Email view is the host. As the Email view has no slots, sequence 3 has

no contributors to compose and is completed after the Email view has been activated.

The sequences 2 and 1 are also completed because they have no further composition

operations to be performed. This concludes the composition process for the workbench

application and the workbench is ready for use.

The composition of a host may trigger the composition of its contributors recursively.

Thus, whenever a host retrieves the extension object of one of its contributors, not only

this contributor itself is guaranteed to be already composed, but also the contributors

of this contributor if their extension objects were accessed.

As the composer only starts a composition sequence for a contributor when the

contributor's extension object is retrieved, the composer only composes a minimal set

of extensions that are in use, thus guaranteeing fast startup times of Plux-based

applications. For example, if the workbench would not retrieve the views' extension

objects immediately in its Plugged event handler, the composer would not compose

[Extension]
[Slot("Application", Plugged="StartApplication")]
class Core {
 void StartApplication(CompositionEventArgs args) }
 IApplication app = (IApplication) args.Plug.Extension.Object;
 app.Start();
 }
}

Listing 3.7: Host retrieving the extension object of its contributor

in the Plugged event handler

Composition Standard

57

view extensions until they are used. In Section 3.3.6 Behavior-guided Composition, we

will modify the workbench so that it does not open each view immediately, but only

when the user clicks an item from the view menu.

Discoverer-triggered Composition

Composition sequences are also triggered when the discoverer adds new extensions.

For each newly added extension, the composer searches the composition state for

matching slots and composes the new contributors, i.e., it creates, tags and plugs them.

However, composition sequences that are triggered by the discoverer do not include

the Activate and the Open operations on the host because the hosts were already

composed in prior composition sequences. In Figure 3.18 on the next page, the

discoverer adds a new Payroll view as a contributor for a View slot. As the composer

finds the Workbench as a matching host for the Payroll view, it starts composition

sequence 4, which creates the Payroll view, tags it with the Menu tag, and plugs it into

the View slot of the Workbench extension (not shown).

Figure 3.17: Composition sequences triggered as subsequences by hosts

that retrieve the extension objects of their contributors

The Plux Component Model

58

Composition Sequences with Multiple Contributors

The composition sequences, shown so far, covered only scenarios with a single

contributor that was composed per composition sequence. However, if multiple

contributors are available for a slot, a composition sequence composes all available

contributors. Such a composition sequence is performed as follows: the composer

activates the host and opens the slot of the host. Next the composer creates and tags all

contributors, before it plugs the contributors. The order in which contributors are

composed is not specified.

Figure 3.19 shows an updated version of composition sequence 2 from Figure 3.17 on

page 58, this time, however, with multiple contributors available at the same time: the

Email view and the Payroll view. The composer activates the Workbench and opens its

View slot. After that, the composer creates and tags the contributors Email and Payroll.

Next, the composer plugs the first contributor, i.e., the Email view. When the Workbench

retrieves the extension object of the Email view, it triggers composition sequence 3,

where the Email view is activated. As the Email view does not have slots, sequence 3 is

completed after that. Finally, the Payroll view is plugged and activated in the same

way.

Figure 3.18: Composition sequence triggered by a discoverer

that adds a new extension

Composition Standard

59

Non-shared versus Shared Contributors

In automatic composition, the composer distinguishes between non-shared and shared

contributor instances. A non-shared instance is connected to only a single host, whereas

a shared instance is connected to multiple hosts and thus is shared among them. Hosts

Figure 3.19: Composition sequence comprising the composition operations

that compose a host with multiple contributors

The Plux Component Model

60

can specify in their metadata whether they want a non-shared or a shared contributor

to be connected, the default being a non-shared contributor.

Let us extend the workbench example, so that the Email view and the Payroll view

share a DataModel contributor, e.g., a common address book. Figure 3.20 shows the

difference between a non-shared and a shared contributor using the workbench

example.

As we want to use the same data both in Email and in Payroll, we choose the shared

data model. Listing 3.8 shows the metadata of the Email view, which specify that it

requests a shared contributor in its Data slot.

If a host specifies that it requests a shared contributor, during composition the

composer either reuses a specific shared instance of the contributor, which was already

created in a prior composition sequence, or the composer creates a new specific shared

contributor instance, which is reused later for other hosts that also request a shared

contributor.

Decomposition Process

The decomposition process defines how extensions are decomposed from a program,

i.e., how the composer disconnects and destroys them. Similar to the composition

process, the decomposition process is divided into sequences. A decomposition

sequence comprises the composition operations that are necessary to decompose a

host. In a decomposition sequence the composer performs the following composition

operations in the given order for every slot: it untags all contributors from the slot,

Figure 3.20: Multiple hosts use separate instances of a contributor (non-shared),

or use a common instance of a contributor (shared)

[Extension]
[Plug("View")]
[Param("Title", "Email")]
[Slot("Data", Shared=true)]
class Email : IView {
 ...
}

Listing 3.8: Metadata of a host with a slot for shared contributors

Composition Standard

61

unplugs them from the slot, and closes the slot. Finally, it deactivates and destroys the

host. Figure 3.21 shows the decomposition of the Workbench extension in

decomposition sequence 2. In this sequence the composer removes the Menu tag,

unplugs the Email view, closes the View slot, and finally deactivates and destroys the

Workbench extension. Decomposition is triggered by the garbage collector as explained

in the next section.

Garbage Collection

Plux provides a special garbage collector that destroys extensions that are not used

anymore. Contributors those are untagged and unplugged during a decomposition

sequence become candidates for garbage collection. Every time when Plux becomes

idle, it starts the garbage collector. Extensions that are neither tagged nor plugged in

any slots cannot be used anymore and thus the garbage collector triggers a

decomposition sequence for them. Extensions that are not plugged but still tagged to a

slot are not used at the moment and thus get deactivated, whereby all contributors of

the deactivated extension get disconnected (see operation Deactivate in Section

3.3.2 Composition Operations) and therefore become new candidates for garbage

collection.

Figure 3.21: Decomposition sequences triggered by the Plux

garbage collector after a host was unplugged

The Plux Component Model

62

In contrast to composition sequences, decomposition sequences are not nested, i.e., a

contributor is not immediately decomposed after it was unplugged; instead,

decomposition starts when Plux is idle again, thus an unplugged contributor can be

moved from one slot to another without being garbage-collected instantly. In other

words, it is possible to unplug the contributor in one decomposition sequence and to

plug it in another composition sequence. If decomposition sequences were nested, the

contributor would already be destroyed or deactivated before it could be plugged into

the new slot.

In Figure 3.21 on page 62 the Workbench is unplugged in decomposition sequence 1 and

becomes a candidate for garbage collection. When Plux becomes idle, it triggers

decomposition sequence 2 for the Workbench because it is neither tagged nor plugged in

any slot. The same happens with the Email view. It is untagged and unplugged in

sequence 2 and decomposed in sequence 3 the next time Plux becomes idle. Finally, the

Workbench and its contributors are removed by the Plux garbage collector and the

Application slot of the Core is empty. This decomposition process ensures automatic

decomposition, i.e., when a host is disconnected, all its contributors as well as their

contributors are disconnected and destroyed recursively as well if they are not

connected to any other host.

3.3.5 Programmatic Composition

Automatic composition is sufficient for many situations, however in some situations

developers need more control over which contributors should be connected to a host

and which should not. For this purpose, Plux allows developers to partially disable the

automatic composition process by configuring the composer, so that it omits certain

composition operations. For example, the composer might be configured to open slots

and to tag contributors automatically, but to omit automatic plugging of contributors

for a certain slot. This configuration can be done for individual slots, for individual

plugs, or for all slots and plugs in the composition state. As a substitute for the

disabled automatic composition operations, developers can call composition

operations programmatically using the composer’s API.

Programmatic composition can be combined with automatic composition. For

example, if a host wants to make sure that its slots are filled in a certain order, it can

use automatic composition to create and plug the contributors, but use programmatic

composition to control when the slots are opened. For doing so, the host disables the

automatic Open composition operation for the slots that it wants to control and calls the

Open composition operation programmatically for these slots when the time has come.

Figure 3.22 shows an example for such a scenario with the Workbench extension that

has two slots. The first slot is for views; everything that plugs here is displayed within

the workbench. The other slot is for containers; the contributor that plugs here controls

how the views are arranged within the workbench. There is some kind of relationship

between the two slots. Without a container, the workbench cannot arrange the views.

Composition Standard

63

Therefore in (a), the View slot has to be kept closed until a container is plugged. When

in (b) a container is plugged, in (c) the View slot should be opened and filled with view

contributors.

The scenario of Figure 3.22 cannot be achieved with automatic composition because

automatic composition would open and fill the View slot immediately, possibly before

the Container slot. There would be no guarantee that the Container slot is filled before

the View slot. To achieve the desired composition order, we use programmatic

composition to control the composition process as shown in Figure 3.23

The Workbench disables the Open operation for its View slot, thus the automatic

composition does not open this slot after activating the Workbench. Then the automatic

Figure 3.22: Relationship between two slots that have to be filled in a certain order

Figure 3.23: Controlling the composition process by combining

automatic and programmatic composition

The Plux Component Model

64

composition opens the Container slot and fills it with the MdiContainer. In reaction to

the Plugged event of the Container slot the Workbench can now call the composition

operation Open for the View slot programmatically. This triggers a new composition

sequence, whereby the automatic composition fills the View slot with the Email

contributor. This composition process composes the Workbench in the desired order, as

views are only composed after a container was composed.

Listing 3.9 shows the implementation of the modified Workbench host. The assignment

AutoOpen=false in the View slot's attribute disables the Open composition operation in

automatic composition. Instead, the workbench performs this operation now

programmatically in the Plugged event handler of the Container slot: when a container

is plugged, the Plugged event handler calls the View slot's Open method. Vice versa, just

before a container is unplugged, the Unplugging event handler closes the View slot by

calling the slot's Close method.

Figure 3.24 shows the composition operations that can be performed programmatically

for extensions, slots, and plugs. The operations Tag, Plug, Untag, and Unplug have a

parameter for the opposite slot or plug, e.g., if the Plug operation is applied on a slot, it

[Extension]
[Plug("Application")]
[Slot("View", AutoOpen=false, ...)]
[Slot("Container", Plugged="ContainerPlugged",
 Unplugging="ContainerUnplugging")]
class Workbench : ExtensionBase, IApplication {
 ...

 void ContainerPlugged(PlugEventArgs args) {
 Slots["View"].Open();
 }

 void ContainerUnplugging(PlugEventArgs args) {
 Slots["View"].Close();
 }
}

Listing 3.9: Implementation of a host that calls composition

operations programmatically

Figure 3.24: Composition operations for extensions, slots, and plugs

Composition Standard

65

gets the opposite plug as an argument; if it is applied on a plug, it gets the opposite slot

as an argument. The Tag and Untag operations also get the name of the applied tag as

an argument.

3.3.6 Behavior-guided Composition

Programmatic composition allows developers to write custom composition logic to

control the composition process. However, this composition logic can bloat the

implementation of an extension. Furthermore, it is hidden inside the extensions and

thus cannot be reused in other extensions. Extensive use of programmatic composition

can lead to the following problems: it duplicates code because common composition

logic has to be repeatedly implemented in many extensions and it is error-prone

because it requires detailed understanding of the composition process.

To avoid programmatic composition, Plux supports composition behaviors, which are

reusable composition logic that can be applied declaratively to individual slots or

globally to all slots in the composition state. A composition behavior targets a specific

composition problem, for example, the requirement that an extension is automatically

unplugged from a slot when some other extension is plugged there. In order to achieve

this, the composition behavior reacts to the composition events of a slot and applies its

composition logic by performing or blocking composition operations when the

composition events occur.

The composition logic of a composition behavior can be implemented in three different

ways. In self-contained composition behaviors the composition logic is implemented in the

behavior itself, in rule-based composition behaviors the composition logic is extracted into

a generic composition rule, which can be reused by different composition behaviors,

and in UI-bound composition behaviors the composition logic is bound to the application's

user interface, i.e., the composition logic is provided by the user who interacts with the

application. The following sections describe the different types of composition

behaviors in detail.

Self-contained Composition Behaviors

A self-contained composition behavior is a class that implements the composition logic

necessary to achieve a desired composition result. It reacts to composition events,

retrieves the composition state, and performs or blocks composition operations.

In the workbench example from Listing 3.9 on page 65 the host used programmatic

composition to make sure that the view slot was only opened after the container slot

was filled. Now, in order to separate this composition logic from the host

implementation, we extract it into a self-contained composition behavior. As the View

slot is depending on the Container slot's composition state, we call the behavior

DependentSlotBehavior.

The Plux Component Model

66

Listing 3.10 shows how the DependentSlotBehavior is attached to the Container slot of the

Workbench extension. The DependentSlotBehavior uses two slots: it reacts to events on the

Container slot and performs operations on the View slot. As the behavior is attached to

the Container slot, it can retrieve this slot via the behavior base class (see property

BehaviorSlot in Listing 3.11). The dependent View slot is passed as an argument to the

behavior’s constructor. Please note how composition behaviors simplify the reuse of

composition logic. Composition logic that is extracted to a behavior can be used just by

putting this single line of code into the constructor of a host extension.

Figure 3.25 shows how the DependentSlotBehavior works: (1) when it receives a Plugged

event from the Container slot, (2) it performs the Open operation on the View slot; vice

versa, (3) when it receives an Unplugging event from the Container slot, (4) it performs

the Close operation on the View slot. As the View slot must not be opened without a

container, e.g., if other extensions try to open it with programmatic composition, the

DependentSlotBehavior registers an event handler for the CanOpen event of the View slot

to allow or block the Open composition operation as follows: (5) when the behavior

receives a CanOpen event from the View slot, (6) it checks the composition state, and

blocks the Open operation if no contributor is plugged in the Container slot.

[Extension]
[Plug("Application")]
[Slot("View")]
[Slot("Container")]
class Workbench : ExtensionBase, IApplication {
 Workbench() {
 Slots["Container"].Behaviors.Add(
 new DependentSlotBehavior(Slots["View"]));
 }
}

Listing 3.10: Attaching a composition behavior to a slot

Composition Standard

67

Listing 3.11 shows the implementation of the DependentSlotBehavior. Every composition

behavior is derived from the common base class CompositionBehavior and inherits the

property BehaviorSlot, which is a reference to the slot to which the behavior is attached.

The constructor of the DependentSlotBehavior sets the dependent slot that should be

controlled by the behavior. When the behavior is attached to a slot, Plux calls the Bind

method, which registers the CanOpenDependentSlot method for the CanOpen event of

the dependent slot. When the behavior is detached from a slot, Plux calls the Unbind

method.

The CanOpenDependentSlot method checks the composition state of the behavior slot

and blocks the Open operation if no contributor is plugged. In order to react to events

of the behavior slot, a behavior overrides the relevant event handler methods. The

DependentSlotBehavior overrides the OnPlugged and OnUnplugging methods: in

OnPlugged it opens the dependent slot when the first contributor is plugged into the

class DependentSlotBehavior : CompositionBehavior {
 Slot dependentSlot;

 DependentSlotBehavior(Slot dependentSlot) {
 this.dependentSlot = dependentSlot;
 }

 override void Bind() {
 dependentSlot.CanOpen += CanOpenDependentSlot;
 }
 override void Unbind() {
 dependentSlot.CanOpen -= CanOpenDependentSlot;
 }

 boolean CanOpenDependentSlot(SlotEventArgs args) {
 return BehaviorSlot.PluggedPlugs.Count > 0;
 }

 override void OnPlugged(PlugEventArgs args) {
 if (BehaviorSlot.PluggedPlugs.Count == 1) { dependentSlot.Open(); }
 }
 override void OnUnplugging(PlugEventArgs args) {
 if (BehaviorSlot.PluggedPlugs.Count == 1) { dependentSlot.Close(); }
 }
}

Listing 3.11: Implementation of a self-contained composition behavior

Figure 3.25: Composition behavior performing and blocking composition operations

depending on composition events and the composition state

The Plux Component Model

68

behavior slot; in OnUnplugging it closes the dependent slot when the last contributor is

about to be unplugged from the behavior slot. This ensures that the dependent slot is

opened only when at least one contributor is plugged into the behavior slot.

Listing 3.12 shows the base class for composition behaviors with the event handlers

that are called in reaction to the composition events. The listing shows only the Bind

and the Unbind methods as well as the handlers for the events that are raised during

the composition operations Activate, Open, and Unplug. Similar handlers exist for all

other composition events (see Figure 3.13 on page 52). In the base class, the CanCompose

event handlers (i.e., CanActivate, CanOpen, or CanUnplug) return true by default. All

other event handlers are implemented empty, so that subclasses only need to override

those methods that are relevant to them.

Rule-based Composition Behaviors

Many composition behaviors only apply to a single composition operation (e.g., Plug),

i.e., they only react to composition events of one specific composition operation, they

only retrieve the composition state composed by this operation, and they perform or

block only this operation (although their composition logic usually differs from the

composition logic of other behaviors). On the other hand, many behaviors implement

the same composition logic, but apply to different composition operations. In order to

increase reusability, rule-based composition behaviors extract the implementation of

Listing 3.12: Composition event handlers in the base class for composition behaviors

abstract class CompositionBehavior {
 Slot behaviorSlot;
 ...

 void Bind(Slot slot) {
 behaviorSlot = slot;
 Bind();
 }
 void Unbind(Slot slot) { /* not shown */ }

 virtual void Bind() { }
 virtual void Unbind() { }

 virtual boolean CanActivate(ExtensionEventArgs args) { return true; }
 virtual void Activating(ExtensionEventArgs args) { }
 virtual void Activated(ExtensionEventArgs args) { }

 virtual boolean CanOpen(SlotEventArgs args) { return true; }
 virtual void Opening(SlotEventArgs args) { }
 virtual void Opened(SlotEventArgs args) { }

 ...

 virtual boolean CanUnplug(PlugEventArgs args) { return true; }
 virtual void Unplugging(PlugEventArgs args) { }
 virtual void Unplugged(PlugEventArgs args) { }
}

Composition Standard

69

the composition logic from a composition behavior into a reusable generic composition

rule.

The DependentSlotBehavior, for example, only depends on whether the behavior slot is

filled and whether Plugged or Unplugging events have occurred. The actual

composition logic controlling the target slot, however, can be extracted into a separate

rule, so that both, the composition rule and the composition behavior, can be reused

with other behaviors and rules (see examples below). As the DependentSlotBehavior

concerns the Plug operation of the behavior slot, and the composition logic opens and

closes the target slot, we separate this behavior into a rule-based PlugBehavior and a

generic OpenSlotRule. In doing so, the OpenSlotRule can now also be combined with

another rule-based behavior, e.g., with a TagBehavior, to open and close a slot

depending on whether a contributor is tagged in the behavior slot. Vice versa, the

PlugBehavior can also be reused with other composition rules.

Listing 3.13 shows how to attach the rule-based PlugBehavior with the OpenSlotRule on

the Container slot of the workbench. This rule-based behavior establishes the same

composition result as the DependentSlotBehavior from Listing 3.10 and Figure 3.25.

In order to allow composition rules to be reused with different behaviors, rule-based

behaviors translate their composition events and their composition state into generic

composition events and a generic composition state and forward them to their

composition rule. The composition rule implements its composition logic based on

generic composition events and a generic composition state.

Figure 3.26 on the next page shows how the rule-based PlugBehavior cooperates with

the OpenSlotRule to ensure that the workbench's View slot is only opened if a container

is plugged: (1) when the PlugBehavior receives the Plugged event from the Container slot,

(2) it translates it into a generic Composed event and forwards it to the OpenSlotRule,

which (3) opens the View slot. Vice versa, (4) when the PlugBehavior receives the

Unplugging event from the Container slot, (5) it translates it into a generic Decomposing

event and forwards it to the OpenSlotRule, which (6) closes the View slot. If someone

tries to open the View slot, (7) the OpenSlotRule receives a CanOpen event, and

(8) checks the generic composition state by retrieving the behavior's IsComposed

property, which (9) is translated into the PlugBehavior-specific IsPlugged operation that

checks whether a contributor is plugged into the Container slot.

[Extension]
...
class Workbench : ExtensionBase, IApplication {
 Workbench() {
 Slots["Container"].Behaviors.Add(
 new PlugBehavior(new OpenSlotRule(Slots["View"])));
 }
 ...
}

Listing 3.13: Binding a rule-based composition behavior to a slot

The Plux Component Model

70

Figure 3.27 shows an example of how the PlugBehavior can be reused with a different

composition rule. As the workbench can only deal with a single container at a time, we

want to make sure that the number of plugged containers is limited to one. A solution

for this is to unplug an already plugged container, if another container is plugged into

the workbench. This can be done with a PlugBehavior in combination with a ReplaceRule

for the Container slot: (a) when the TabContainer is plugged, the behavior notifies its

ReplaceRule that a new contributor was composed. In (b) the ReplaceRule reacts to the

notification and sends a generic Decompose command to the PlugBehavior, which is

translated to an Unplug command that finally unplugs the MdiContainer.

Figure 3.26: Rule-based composition behavior translating composition events and

the composition state of a composition operation to a composition rule

Composition Standard

71

Listing 3.14 shows that the workbench can also attach multiple behaviors to its

Container slot, e.g., a PlugBehavior with an OpenSlotRule and a PlugBehavior with a

ReplaceRule. The ReplaceRule unplugs previously plugged extensions, as soon as new

extensions get plugged and the maximum number of plugged extensions is reached.

The maximum can be set through a parameter in the rule's constructor. An additional

parameter for the replace mode determines if the ReplaceRule should unplug previously

plugged extensions just before or just after a new extension was plugged. The

ReplaceMode.AfterComposition specifies that this rule should not perform the

replacement until the new extension was plugged. If multiple behaviors are attached to

a slot, they are executed in the order in which they were attached. In the example of

Listing 3.14, however, the behaviors are independent, thus the order does not matter.

The example in Figure 3.28 on the next page shows how we can reuse the ReplaceRule,

however this time in combination with a TagBehavior. For this, we disclose a further

improvement of our workbench example. In order to use the composition state for

keeping track of the current focus view, we define an additional tag for the

workbench's View slot, namely the Focus tag. The view, which is tagged with this tag,

has the focus. Since only one view can have the focus at the same time, every time

[Extension]
...
class Workbench : ExtensionBase, IApplication {
 Workbench() {
 Slots["Container"].Behaviors.Add(
 new PlugBehavior(new OpenSlotRule(Slots["View"])));
 Slots["Container"].Behaviors.Add(
 new PlugBehavior(
 new ReplaceRule<Plug>(1, ReplacementMode.AfterComposition)));
 }
 ...
}

Listing 3.14: Attaching multiple composition behaviors to a slot

Figure 3.27: A PlugBehavior with a ReplaceRule ensures that there

is only one contributor plugged at the same time

The Plux Component Model

72

when a new view gets the Focus tag, the TagBehavior with the ReplaceRule removes the

previous Focus tag. In Figure 3.28 (a) the Email view is tagged with Menu and Focus. As

described in Section 3.3.1 on page 45, the Menu tag indicates which views should be

visible in the view menu, the newly added Focus tag specifies that the Email view is

currently focused. As soon as the Payroll view is tagged with Focus in (b), the Payroll

view is focused in the workbench window and the TagBehavior with the ReplaceRule

removes the Focus tag from the Email view.

The TagBehavior with the ReplaceRule, should only replace the Focus tag but not the

Menu tag, if multiple views are tagged with Menu. Therefore, beside the composition

rule, the rule-based TagBehavior has a further parameter, which filters the tag to which

the behavior should be applied. In Listing 3.15 we attach the TagBehavior with the

ReplaceRule to the Container slot and use the "Focus" parameter to set a filter for the

Focus tag.

Listing 3.15: Binding a TagBehavior with a filter for the tag

to which the behavior is applied

[Extension]
...
class Workbench : ExtensionBase, IApplication {
 Workbench() {
 ...

 Slots["View"].Behaviors.Add(
 new TagBehavior("Focus",
 new ReplaceRule<Tag>(1, ReplacementMode.AfterComposition)));
 }
 ...
}

Figure 3.28: Setting the focus of a view by the use of

the composition state with the Focus tag

Composition Standard

73

Listing 3.16 shows the implementation of the rule-based PlugBehavior. All rule-based

composition behaviors inherit from their base class RuleBasedBeahvior, which has a type

parameter denoting the meta-object to which the composition operation should apply.

The constructor takes a CompositionRule and passes it to its base class, where it is

stored. Using the ComposedObjects property, the composition rule can retrieve the

behavior's composition state in a generic way. In the case of PlugBehavior, this is the

collection of plugs, which are plugged into the behavior slot. If the CompositionRule

needs to perform a composition operation, it calls the behavior's generic Compose or

Decompose methods, which are translated into the PlugBehavior-specific Plug or Unplug

operations. The composition events CanPlug, Plugging, Plugged, CanUnplug,

Unplugging, and Unplugged are forwarded to their generic counterparts in the

composition rule. The implementation, shown in Listing 3.16, is a simplified version;

the real implementation has additional methods to retrieve candidates for composition,

i.e., meta-objects that are currently available and could be composed. Composition

candidates can be used, for example, in UI-bound composition behaviors, where the

class PlugBehavior : RuleBasedBehavior<Plug> {
 public PlugBehavior(CompositionRule<Plug> rule) : base(rule) { }

 override Collection<Plug> ComposedObjects {
 get { return BehaviorSlot.PluggedPlugs; }
 }

 override void Compose(Plug plug) {
 BehaviorSlot.Plug(plug);
 }
 override void Decompose(Plug plug) {
 BehaviorSlot.Unplug(plug);
 }

 override bool CanPlug(CompositionEventArgs args) {
 return Rule.CanCompose(args.Plug);
 }
 override void Plugging(CompositionEventArgs args) {
 Rule.Composing(args.Plug);
 }
 override void Plugged(CompositionEventArgs args) {
 Rule.Composed(args.Plug);
 }

 override bool CanUnplug(CompositionEventArgs args) {
 return Rule.CanDecompose(args.Plug);
 }
 override void Unplugging(CompositionEventArgs args) {
 Rule.Decomposing(args.Plug);
 }
 override void Unplugged(CompositionEventArgs args) {
 Rule.Decomposed(args.Plug);
 }
}

Listing 3.16: Implementation of a rule-based composition behavior

The Plux Component Model

74

composition is controlled by the user via the user interface (see UI-boundend

Composition Behaviors below).

The implementation of the ReplaceRule is shown in Listing 3.17. Composition rules are

derived from the common base class CompositionRule. The base class CompositionRule

maintains a list of composed objects (e.g., contributors in a slot). The class ReplaceRule

decomposes the composed object that was composed first if the maximum number of

composed objects (denoted by the field maximum) is exceeded. It has also a field for the

replacement mode, which specifies if the rule should fire before, or after a composition

event. For this the rule overrides both, the Composing and the Composed event handlers.

Depending on the replacement mode, one of these methods checks whether the

maximum amount of composed objects is already reached and calls the method

Decompose from the base class before or after a composition event if required. The

Decompose method gets the first composed object as an argument. The base class

forwards the call to the composition behavior, which finally translates the generic

composition operation into a concrete composition operation, e.g., Unplug if the rule is

combined with a PlugBehavior.

The Plux composition library implements a rule-based composition behavior for every

composition operation. Additionally, it implements a set of predefined composition

rules, which cover common composition patterns, such as limiting the cardinality of

enum ReplacementMode {
 BeforeComposition,
 AfterComposition
}

class ReplaceRule<T> : CompositionRule<T> {
 int maximum;
 ReplacementMode replacementMode;

 ReplaceRule(int maximum, ReplacementMode replacementMode) {
 this. maximum = maximum;
 this.replacementMode = replacementMode;
 }

 override void Composing(T metaObject) {
 if (replacementMode == ReplacementMode.BeforeComposition
 && ComposedObjects.Count == maximum) {
 Decompose(ComposedObjects[0]);
 }
 }
 override void Composed(T metaObject) {
 if (replacementMode == ReplacementMode.AfterComposition
 && ComposedObjects.Count > maximum) {
 Decompose(ComposedObjects[0]);
 }
 }
}

Listing 3.17: Implementation of a composition rule

Composition Standard

75

contributors either through replacing or through denying them, ensuring a certain

composition order, or filtering contributors depending on certain criteria, e.g., on a

value provided by a parameter of a contributor's plug or by the vendor of a

contributor.

UI-bound Composition Behaviors

In self-contained composition behaviors, the composition logic is implemented within

the behavior itself. In rule-based composition behaviors, the composition logic is

extracted into a composition rule. Finally, in UI-bound composition behaviors, the

composition logic is provided by the user of an application, i.e., the user triggers

composition operations through the application's user interface. Vice versa, the user

interface is updated by the behavior on changes in the composition state. Therefore,

instead of a composition rule, the constructor of an UI-bound behavior gets an UI

control as an argument, which is bound to the composition state by the behavior.

In the example of Figure 3.28 on page 73 the workbench receives the Tagged event for

the Focus tag to focus the tagged view. To ensure that only one view is tagged with

Focus at the same time, we attached a TagBehavior in combination with a ReplaceRule to

the View slot (see Listing 3.15). However, the ReplaceRule only ensures that just a single

contributor has the Focus tag at the same time, but it does not focus the tagged view in

the workbench, nor it updates the Focus tag in the composition state when the user

changes the focus of a view by clicking on a view window in the workbench. This

implementation has to be done programmatically in the workbench. In order to extract

this implementation from the workbench too, we can use an UI-bound behavior that

binds the Focus tag to the user interface of the workbench.

Figure 3.29 on the next page shows how a UI-bound behavior works that binds the

composition state of the workbench's View slot to the workbench's container control.

The UI-bound behavior, which is called ViewBehavior, is attached to the View slot and

handles the slot's Tagged, Plugged and Unplugging events. When a view is tagged with

Focus, the ViewBehavior focuses the tagged view in the container, when a view is

plugged, the behavior opens it in the container, and when a view is about to be

unplugged, it closes it in the container. For this, the ViewBehavior also reacts to the UI

events FocusChanged and ViewClosed from the container. The behavior handles those

events and updates the composition state accordingly.

In Figure 3.29 (a) the Email view and the Payroll view are plugged into the View slot,

therefore both views are opened. As the Payroll view currently has the focus, it is

tagged with the Focus tag. When the user clicks on the Email view in (a), in (b) the

container focuses the view and the UI-bound behavior moves the Focus tag from the

Payroll view to the Email view. When the user closes a view by clicking on its close

button in (b), the behavior reacts on the container's ViewClosed event and (c) unplugs

the view from the View slot. Furthermore, as the Email view is closed now, the

container focuses the Payroll view and the behavior sets the Focus tag to the Payroll

view. As the Email view is not plugged to any slot anymore, it was deactivated by the

The Plux Component Model

76

composer. Listing 3.18 on page 80 shows the final implementation of the workbench

example, which includes the code that shows how the ViewBehavior is attached to the

workbench's View slot.

As we have bound the composition state of the View slot to the workbench's container

control, the container can now be controlled via the composition state of the View slot.

Thus, if we now bind the View menu and the Window menu to the View slot too, views

can be controlled via these menus, but without having any dependencies between the

menus and the container. Similar to that, of course, views also can be controlled with

any other user controls or tools that are bound to the View slot.

In Figure 3.30 we use two further UI-bound behaviors to bind the composition state of

the View slot to the view menu and to the window menu. The view menu displays an

entry for every view contributor that is tagged with the Menu tag. The user can open or

close a view by clicking on these menu entries, i.e., clicking on such an entry either

plugs or unplugs a view, while the ViewBehavior, which is described above, opens or

closes the view in the container. In the view menu, open views are marked with a

checkmark. The window menu displays an entry for each open view, i.e., for each

plugged view. The focused view is marked with a checkmark, i.e., the window menu

marks the view that is tagged with the Focus tag. By clicking on an entry in the window

menu the user can set the focus to the corresponding view. For this, the UI-bound

behaviors for the view menu and for the window menu get a reference to the according

menu control via their constructor and add or remove menu items depending on the

composition state. Furthermore, these UI-bound behaviors react on the menu items'

Click event and update the composition state accordingly.

Figure 3.29: Binding the composition state to the user interface of an application

Composition Standard

77

As in Figure 3.30 (a) no views are tagged or plugged to the View slot, the view menu

and the window menu are empty. In (b) the Email view and the Payroll view are tagged

with Menu and therefore displayed within the view menu. When the user clicks on the

view menu's Payroll entry, in (c) the behavior plugs the view into the View slot and the

Payroll menu entry is marked with a checkmark. Additionally, the window menu

displays an entry for the plugged view. As the Payroll view was just opened, it got the

focus in the container and therefore was tagged with the Focus tag. Thus, the menu

entry of the window menu is marked with a checkmark too. When the user clicks on

the menu entry for the Email view, in (d) the same as with the Payroll view happens

with the Email view. When the user clicks on the Payroll entry in the window menu, in

(e) the behavior moves the Focus tag to the Payroll view and thus the container focuses

this view. If the user clicks on the menu entry of the opened Payroll view in the view

menu, the behavior unplugs the view, which causes the view to be unplugged in (f)

and thus closed. As the Payroll view is unplugged now, the checkmark for this view in

the view menu is removed and the entry in the window menu is removed, too.

Figure 3.30: Modifying the composition state via the user interface

The Plux Component Model

78

Listing 3.18 shows the final implementation of the workbench example, which

combines automatic composition, programmatic composition, and behavior-guided

composition in order to show plugged views within an exchangeable container and to

control views via the view menu and the window menu. The parts, which were not

described until now, are highlighted. In the constructor we create the window for the

workbench, the view menu, and the window menu. Additionally, we attach a

PlugBehavior with the OpenSlotRule and a PlugBehavior with the ReplaceRule to the

Container slot. The ViewMenuBehavior binds the composition state of the View slot to the

view menu and the WindowMenuBehavior binds the composition state of the View slot to

the window menu. In the attribute for the Container slot we register the event handler

method ContainerPlugged and ContainerUnplugging. When a container is plugged, the

[Extension]
[Slot("Container", Plugged="ContainerPlugged,
 Unplugging="ContainerUnplugging")]
[Slot("View", AutoOpen=false)]

class Workbench : ExtensionBase, IApplication {
 Window window;
 Menu viewMenu
 Menu windowMenu;
 ViewBehavior viewBehavior;

 Workbench() {
 window = ...
 window.Closed += WindowClosed;
 viewMenu = ...
 windowMenu = ...
 Slots["Container"].Behaviors.Add(
 new PlugBehavior(new OpenSlotRule(Slots["View"])));
 Slots["Container"].Behaviors.Add(
 new PlugBehavior(
 new ReplaceRule<Plug>(1, ReplacementMode.AfterComposition)));
 Slots["View"].Behaviors.Add(new ViewMenuBehavior(viewMenu));
 Slots["View"].Behaviors.Add(new WindowMenuBehavior(windowMenu));
 }

 void ContainerPlugged(CompositionEventArgs args) {
 IContainer container = (IContainer) args.Plug.Extension.Object;
 AddConainer(container.Control);
 viewBehavior = new ViewBehavior(container);
 Slots["View"].Behaviors.Add(viewBehavior);
 }

 void ContainerUnplugging(CompositionEventArgs args) {
 IContainer container = (IContainer) args.Plug.Extension.Object;
 Slots["View"].Behaviors.Remove(viewBehavior);
 viewBehavior = null;
 RemoveContainer(container.Control);
 }

 void AddContainer(Control containerControl) { /* not shown*/ }

 void RemoveContainer(Control containerControl) { /* not shown*/ }

Composition Standard

79

event handler ContainerPlugged adds the container control to the window control and

creates a ViewBehavior that binds the composition state of the View slot to the currently

plugged container. Vice versa, when a container is about to be unplugged, the event

handler ContainerUnplugging detaches the ViewBehavior from the View slot and removes

the container from the window. When the Workbench is plugged into the Plux core's

Application slot, the method Start is called. Start opens the window for the workbench.

When the window is closed, the event handler WindowClosed uses programmatic

composition to destroy the Workbench extension, which includes decomposing all its

contributors.

For simplicity reasons, we omitted some details of the real workbench implementation.

For example, we did not show that the menu is implemented as an extension itself,

which can be extended with pluggable menu entries. Furthermore, we did not cover

how we handle the customizable order of menu entries, which is implemented with an

order parameter that must be provided by the plug of each view and the plug of each

pluggable menu entry.

3.3.7 User-guided composition

Developers can influence the composition process using programmatic composition

and composition behaviors. However, with user-guided composition even

administrators and users can control the composition of an application. Since Plux

maintains the composition state, composition tools can retrieve the composition state,

present it to the user, and modify it. Plux ships with several composition tools, such as

a Visualizer, which presents the composition state in a graphical manner; a Console,

which provides text-based access to the composition state, a Persistor, which persists

and restores the actual composition state; or a Scripting Engine, which allows the

execution of predefined composition scripts. Furthermore, we implemented some

experimental composition tools for user-guided composition that compose an

application based on the available hardware, e.g., we implemented a game, which gets

recomposed based on the pieces on a playing field.

 void Start() {
 window.Show();
 }

 void WindowClosed() {
 Extension.Destroy();
 }
}

Listing 3.18: Final implementation of the Workbench extension using automatic,

programmatic, and behavior-guided composition

The Plux Component Model

80

Visualizer

The Visualizer is a workbench view, which draws a graph of the current composition

state with extensions, slots, plugs, and their connections. It supports developers,

administrators, and users in understanding the composition of an application.

Furthermore, the visualizer allows the user to click on each meta-object representation

in the graph in order to see detailed information about the meta-object's state and to

modify its composition state.

Figure 3.31 shows how the visualizer presents a composition state of an application

(note, that this application happens to contain the visualizer itself as an extension). In

the example, the user clicked on the View slot of the Workbench extension to see its

options. In Properties the user can retrieve and modify the composition configuration of

the slot, for example, he can enable or disable automatic composition for this slot. With

the composition operations below, the user can modify the composition state. As the

View slot is open, the Open composition operation is disabled. For the operations Tag,

Untag, Plug, and Unplug, the visualizer provides a list of all possible contributors, to

which the operation can be applied. As the Visualizer view is the only plugged

contributor in the View slot, the Unplug operation lists this contributor as the only

possible candidate to be unplugged.

Console

The Console provides a text-based interface to the composition state of an application. It

supports commands to retrieve and to modify the composition state. In order to make

the console customizable and extensible, its commands are implemented as separate

extensions, which are plugged to the console via its Commands slot.

Figure 3.31: The visualizer presents the current composition state in a graphical

manner and allows users to modify the composition state

Composition Standard

81

In Figure 3.32, the console view is extended with two Commands contributors. While

the RuntimeCommands implements commands for retrieving and modifying the

composition state, the LayoutCommands extend the Console with commands for

modifying the arrangement of controls in views that use the Plux Layout Library (see

Section 6.3 Runtime Libraries) to build a component-based user interface from control

extensions. The example in Figure 3.32 shows the get-extension command that lists all

extensions, which match an optional filter, and the plug command that performs the

Plug operation for a host and a contributor.

Persistor

The Persistor saves the current composition state, in order to restore it at a later time.

This is useful to save the composition state at one time and continue work at another

time with the same composition as before. The persistor can also be used if an

application error occurs. It can then save the actual composition state to a file and

transfer it to the vendor of the application, so that the vendor can reproduce the user's

composition state on his own machine and look at the error.

Scripting Engine

The Scripting Engine allows executing scripts that perform composition operations in

order to establish a certain composition state of an application. Applications can thus

be easily reconfigured at run time to customize them for a current working task. Scripts

can be triggered, for example, by clicks on the user interface or by starting them via the

Plux console.

Figure 3.32: The console provides a text-based interface to

the composition state of an application

The Plux Component Model

82

3.4 Interaction Standard

The interaction standard specifies how extensions communicate among each other, and

how they exchange data. As extensions can retrieve references to the extension object

of other extensions, hosts can call their contributors' methods directly. However,

developers must not expect that the referenced extension object is an instance of the

class that was marked with the extension attribute. In some situations, e.g. when Plux

is started with certain security constraints, Plux uses proxy objects instead of the

original extension objects. Proxy extension objects forward calls to the actual

implementation of an extension.

3.4.1 Thread Management

The Plux interaction standard specifies a dedicated runtime thread, in which all

operations concerning the component model must be performed. Thus, extensions

must be executed in the runtime thread if they retrieve the composition state, if they

call methods of other extensions, and if they perform composition operations in

programmatic composition. As Plux raises all composition events in the runtime

thread, and as method calls beyond extension boundaries must be performed within

the runtime thread, developers need not worry about thread synchronization issues,

such as race conditions or deadlocks and can be sure that the composition state is not

modified unexpectedly from a background thread.

If an extension implements a long running task using a worker thread, it must ensure

that the worker thread does not escape the extension's boundaries. Such extensions can

use the Plux dispatcher to dispatch their results back into the runtime thread.

Furthermore, extensions that listen to events that are raised from other threads than the

runtime thread (e.g., file system events from the operating system) can use the

dispatcher to handle such events in the runtime thread. The dispatcher provides an

interface for checking whether the current code is executing in the runtime thread and

to dispatch calls either synchronously or asynchronously into the runtime thread.

3.4.2 Exception Handling

Plux ensures that its runtime does not crash if any unhandled exception occurs. As

Plux performs all operations in the runtime thread, each executed code was initiated

from a dispatcher operation. In the case of an unhandled exception, the dispatcher

operation gets aborted, the runtime logs the exception, and raises an

UnhandledException event. Afterwards, the dispatcher continues its work with the next

dispatcher operation in the queue.

Customization Standard

83

3.5 Customization Standard

Extensions consist of code and metadata, which are discovered by the discoverer, and

which cannot be modified during run time. However, the Plux customization standard

defines a settings model for extensions, by which extensions can be enriched with

configurable settings. Extension settings are discovered by an exchangeable settings

discoverer and can be retrieved via the meta-object of an extension. Vice versa,

extension settings can be modified, whereby modifications are written back to the

settings source. If an extension writes to its settings, but no settings were discovered,

the setting discoverer creates a settings source on demand. The Plux infrastructure

implements a settings discoverer for XML files and a settings discoverer that retrieves

the settings from a database.

Listing 3.19 shows an example for an XML settings file. The example shows the settings

for the Visualizer extension, which is described in Section 3.3.7 on page 80. The example

file only contains settings for a single extension; however, every setting file can contain

settings for multiple extensions from different plugins. The plugin element's name

attribute references the plugin Plux.Visualizer and the name attribute of the child

element extension references the Visualizer extension, which is implemented in the

Plux.Visualizer plugin. Settings are specified with the setting element, which maps from

a key to a value, or with the list element, which maps from a key to a list of values, or

with the dictionary element, which maps from a key to a dictionary of settings. Setting

dictionaries again can contain setting elements, list elements, and further dictionary

elements. Values can have any simple type such as Boolean, Integer, or Double, as well as

types for which a type converter is implemented.

<?xml version="1.0" encoding="utf-8"?>
<settings xmlns="http://ase.jku.at/plux/SettingsSchema/">
 <plugin name="Plux.Visualizer">

 <extension name="Visualizer">
 <setting key="ShowDisplayNames" value="True" />
 <setting key="ShowExtensionId" value="False" />
 ...

 <list key="IgnoreExtensions" >
 <item value="Console" />
 </list>

 <dictionary key="DisplayNames">
 <setting key="Application" value="Ap" />
 <setting key="Workbench" value="Wo" />
 ...
 </dictionary>
 </extension>

 </plugin>
</settings>

Listing 3.19: XML settings file for the Visualizer extension

The Plux Component Model

84

Listing 3.20 shows how the Visualizer extension uses the settings, which are specified in

Listing 3.19, to configure the appearance of its graph. Extension settings are retrieved

via the Settings property of the extension's base class ExtensionBase. The property

ShowDisplayNames specifies, if the graph of the Visualizer should display the original

extension names, or if a special display name should be used instead, e.g., using the

display name "Wo" instead of the extension name "Workbench". As the value of this

property is specified in an extension setting, it is retrieved via the Settings property.

The method GetValue gets a key and a default value as arguments. The key maps to the

stored value. The default value is returned, if the key was not found. Furthermore, the

default value provides the return type for the generic GetValue method. The setter of

ShowDisplayNames uses the SetValue method to store the assigned value back to the

settings source.

The DisplayNames property returns a dictionary, which stores the mappings from

original extension names to their display names. The dictionary is retrieved using the

GetDictionary method. If the key "DisplayNames" was not found, a new dictionary is

[Extension]
...
class Visualizer : ExtensionBase, IView {
 ...
 bool ShowDisplayNames {
 get { Settings.GetValue("ShowDisplayNames", true); }
 set { Settings.SetValue("ShowDisplayNames", value); }
 }
 SettingDictionary DisplayNames {
 get { Settings.GetDictionary("DisplayNames");
 }
 SettingList IgnoreList {
 get { Settings.GetList("IgnoreList"); }
 }

 void SetDisplayName(Extension e, String displayName) {
 DisplayNames.SetValue(e.Name, displayName);
 }
 void IgnoreExtension(Extension e) {
 IgnoreList.AddValue(e.Name);
 }

 void Draw() {
 ...
 foreach(Extension e in extensions) {
 if (IgnoreList.Contains(e.Name)) { continue; }
 String extensionName = ShowDisplayNames
 ? DisplayNames.GetValue(e.Name, e.Name) : e.Name;
 ...
 }
 }

}

Listing 3.20: Retreiving and modifying extension settings

Customization Standard

85

created. The IgnoreList property returns a list of extension names for extensions that

should be hidden in the graph.

The method SetDisplayName stores a new display name for an extension. As settings

dictionaries keep track of modifications, any modifications are written back to the

settings source. Similar to this, the method IgnoreExtension stores extension names in a

SettingList. Modifications are written to the settings source, too.

Finally the Draw method uses the settings: it uses the IgnoreList property to skip all

extensions whose names are in the list, it uses the ShowDisplayNames property to decide

whether to show the original extension name or the display name, and it uses the

DisplayNames property to retrieve the display names for extensions, whereat the

extension name is both, the key and the default value for the GetValue method.

Chapter 4

87

4 Plugin-based Distributed Multi-user Web

Applications

This chapter presents the idea of applying the plugin approach to web

applications in order to enable them to be extended and customized by the end

users. Users should be enabled to adapt web applications for their specific needs

and use their own set of components. User-specific components can be installed

either on the server-side in an individual user scope, or on the client-side (i.e.,

on the user's computer), by which a web application becomes a distributed web

application. A case study demonstrates the benefits of building extensible web

applications in several usage scenarios.

Web applications face similar problems as desktop applications: if they get big and

feature-rich, they become hard to understand and difficult to maintain. Current web

applications are hardly customizable and usually not extensible by end users.

Furthermore, they cannot access the local hardware of client computers. In order to

solve these problems, we applied the plugin approach also to web-based software.

While the original version of Plux targeted single-user desktop applications, this thesis

presents a number of enhancements so that Plux can now also be used to build plugin-

based distributed multi-user web applications.

 Plugin-based. Plux allows building extensible web applications. Extensions can

either be installed by the administrator or even by the end user. Depending on

their type of integration, extensions can be classified as: a) Server-side extensions

that are installed and executed on the server, b) Client-side extensions that are

installed and executed on the client, and c) Sandbox extensions that are installed

on the server, but transferred to the client on demand to be executed there in a

sandbox.

 Distributed. Plux composes extensions into a coherent web application,

regardless of if they are executed locally on the web server, remotely on the

client-side computer, or remotely on a different server. Whether extensions are

installed locally or remotely, they are implemented in the same way and thus

Plugin-based Distributed

Multi-user Web Applications

Plugin-based Distributed Multi-user Web Applications

88

the same extension can be reused in different environments. This gives

developers and users a seamless experience.

 Multi-user. Plux maintains different user scopes. Extensions can be made

available for all users of a web application, for a group of users, or just for a single

user. Thus every user can have an individual set of components, i.e., an

individual composition state. Authorized users can install their extensions on

the server, while non-authorized users can still extend a web application by

installing extensions on the client.

 Web application. Plux provides an infrastructure for hosting component-based

applications on a web server so that they can be accessed via a web browser.

The infrastructure cares about thread and session management and provides a

lightweight web UI library for building distributed user interfaces, where user

controls can be executed on different computers.

We describe several usage scenarios that demonstrate the benefits for extensible web

applications. As a running example we use a time recorder web application. The usage

scenario covers the distribution of extensions as server-side, client-side, and sandbox

extensions, as well as the multi-user support via individual user scopes.

The time recorder can be used to record and evaluate working hours. Figure 4.1 shows

the basic version of its composition state. Features are implemented as extensions, and

the TimeRecorder extension is the host for the main features. The basic version consists

of two features: one for recording working hours and one for computing and

displaying statistics for recorded working hour. For both features, the implementation

of the business logic is separated from the user interface. The RecorderControl extension

provides the user interface that allows the user to start and stop the Recorder extension.

The Recorder is plugged into the RecorderControl, generates time records, and stores

them using the DataStore extension. As the DataStore is a shared extension, which is

plugged into the Recorder and into the Statistics extension, the Statistics extension can

retrieve time records and can compute the statistics that are queried and displayed via

the StaticsControl. The StatisticsControl renders the user interface for the statistics

feature and is plugged into the TimeRecorder host.

Figure 4.1: Base composition of the time recorder web application

Server-side Extensions

89

The TimeRecorder extension is a view that can be plugged into the Web Workbench

extension, which is very similar to the workbench described in Chapter 3. However, to

keep things simple, extensions that are irrelevant for the usage scenarios (e.g.,

Discoverer or Workbench) are not shown in the figures of this chapter.

Figure 4.2 shows the user interface of the time recorder web application. The

RecorderControl provides buttons for starting, stopping, and pausing records; it also

displays the current date as well as the start time of the current record. The

StatisticsControl shows the time records that match to a selected filter, and also shows

the result of a statistical value, which can be selected via the statistics button.

As the time recorder is extensible, the user interface must be extensible as well. Control

contributors, such as RecorderControl and StatisticsControl, declare their desired size and

position in their metadata. The Plux Layout Library, which is implemented by the Plux

composition infrastructure, retrieves these layout values and arranges the controls

accordingly.

The composition shown in Figure 4.1 is the base configuration of the web application,

which is available to all users. All these extensions are server-side extensions, i.e., they

are installed and executed on the web server. In the following sections, we show how

users can extend this web application with user-specific extensions. We describe how

server-side, client-side and sandbox components can be integrated and explain for

which scenarios they are suitable.

4.1 Server-side Extensions

Let us assume that a user is not satisfied with the statistics that are provided by the

Statistics extension. Thus, he can implement a user-specific custom extension, which

provides the required functionality. In order to allow the user to access his individual

statistics from any computer, the new extension is installed on the server. As the

Figure 4.2: User interface of the time recorder web application

Plugin-based Distributed Multi-user Web Applications

90

extension is a user-specific extension, only the user who installed the extension should

have access to it and thus it is executed in an individual user scope.

Figure 4.3 shows the user-specific composition for the user Markus, who installed the

server-side extension CustomStatistics. The figure comprises the base composition

(shown in Figure 4.1) extended by the new extension. The dashed border indicates the

user scope to which the newly added extension is applied.

Server-side extensions are installed and executed on the server. Thus, they are

available all the time, regardless from which computer the user accesses the web

application. Because server-side extensions are executed on the same server as all other

extensions of the time recorder, there is no performance penalty caused by remote

communication. However, extensions in different user scopes are executed in separate

memory areas (i.e., in different AppDomains [Microsoft, 2013b]) and thus

communication between them causes some performance overhead. As server-side

extensions increase the work load on the server and as they may execute malicious

code, users typically need to be authorized to install extensions on the server.

4.2 Client-side Extensions

Now we assume that the user Markus is an engineer in the field. He needs to track his

working hours using a portable device. Because the device cannot connect to the

internet, he periodically has to synchronize it with the time recorder application. To

synchronize time records, the user connects his device to his office computer, where

the client-side extension MobileSync has been installed. Because this extension is

executed on the client computer, it can access the portable device there.

Figure 4.4 shows the composition for the user Markus. To synchronize the data between

the device and the time recorder web application, the Data Store extension is plugged

to the MobileSync extension.

Figure 4.3: Extending a web application with a user-specific server-side extension

Client-side Extensions

91

Client-side extensions are installed on the client and are remotely plugged into the web

application. To plug remotely means that the host and the contributor are executed on

different computers. Plux creates proxies on both sides on‑the‑fly. These proxies

handle the communication between the host and the contributor transparently. Note,

that Plux allows any extension to run remotely without extra coding effort.

Client-side extensions allow users to build components that integrate local hardware or

software into the web application. Furthermore, since client-side extensions are

installed on client computers, they enable users to extend their web applications

without being authorized to install extensions on the server. However, client-side

extensions are executed remotely and cause additional communication overhead.

The above scenario described how a client-side extension enabled a single user to

connect his local hardware to a web application. The next scenario now describes a

situation, where a group of users need to have access to hardware, which is not located

near the web server.

Users, which are in the group Worker, do not have the permission to use the web

interface for recording their working hours. Instead they must use a hardware time

clock to track their working hours. The time clock is connected to a computer on which

a client-side extension is installed that integrates the time clock into the time recorder

application. Please note, that in this scenario the client-side extension is installed on a

different computer than the one that is used to access the web application via the web

browser (e.g., to check statistics).

Figure 4.5 on the next page shows the composition for members of the group Worker.

As these users should only be able to record working hours via the hardware time

clock, the server-side extension RecorderControl is removed for this group, while the

client-side extension HardwareRecorder is installed instead. Thus, if a user of this group

uses the time recorder from any computer, he will see the user interface of the

HardwareRecorder (see Figure 4.6), which displays the current status of the Recorder, but

Figure 4.4: Extending a web application with a user-specific client-side extension

Plugin-based Distributed Multi-user Web Applications

92

does not allow the user to modify its state. To ensure that the HardwareRecorder

extension is available for all users in the group at any time, the computer on which the

extension is installed is permanently connected to the web server. As this computer

acts as a server for the time recorder, the environment in which the hardware time

clock is located is called Time Clock Server.

Another possible reason for using client-side extensions with group scope instead of a

server-side extension is authorization. Even if one is not authorized to install an ex-

tension on the server, one can make it available to multiple users as a client-side

extension with group scope.

4.3 Sandbox Extensions

In the next scenario, the developers of the time recorder want to provide a richer user

interface, e.g., one that is built with Silverlight [Microsoft, 2011b] instead of HTML.

Silverlight code runs in a sandbox within the web browser of the client. Therefore, the

best way to integrate such code into a Plux application is to implement Silverlight

Figure 4.6: User interface of HardwareRecorder extension that is

executed on a remote computer

Figure 4.5: Extending a web application with a client-side extension

for multiple users

Concluding Example

93

components as extensions that reside on the server but are downloaded to the web

browser on demand to be executed there.

In order to implement this scenario, we remove the user interface extensions

RecorderControl and StatisticsControl, implement new UI extensions in Silverlight and

install them on the server. There, they are discovered as sandbox extensions. When a

user starts the time recorder, the sandbox extensions are downloaded from the server

to the client computer and are executed there in the sandboxed Silverlight

environment. The business logic extensions remain on the server and are remotely

plugged into the Silverlight extensions on the client (see Figure 4.7).

The advantage of sandbox extensions is that they are installed on the server-side, but

executed on the client. Thus, they are available for each client, but do not increase the

work load on the server. The disadvantage is that the user has to install the Silverlight

runtime environment on its computer, which is not installed by default on most

operating systems. Furthermore, as such extensions are plugged remotely, they cause

additional communication overhead.

4.4 Concluding Example

Finally, Figure 4.8 shows the composition state of a concluding example, which

combines all types of extension integration: server-side, client-side, and sandbox

extensions. We assume that user Markus needs his custom statistics, he tracks working

hours with a portable device, he is member of the group Worker, so he uses the

hardware time clock for recording working hours in the office, and the time recorder

application provides a rich user interface that is implemented with sandbox extensions.

Figure 4.7: Extending a web application with sandbox extensions that are installed on the

server, transferred to the client on demand, and executed there in a sandbox

Plugin-based Distributed Multi-user Web Applications

94

The composition is distributed across three different computers: the Web Server, the

Time Clock Server, and the Client computer. Even though extensions are executed

remotely on different computers, they are implemented in the same way as extensions

that are plugged locally. Developers just declare the extensions' requirements and

provisions using metadata (see 3.1 Metadata Standard), and Plux automatically

composes them to a coherent web application. Furthermore, Plux handles the

communication between the host and the contributor transparently so that developers

need not have to care about the distribution of extensions. In other words, a server-side

extension of one web application can be reused as a client-side extension in some other

web application, and vice versa. There is one exception, though: since the current

version of Plux is implemented in .NET, it uses the Silverlight technology for sandbox

extensions. Unfortunately, Silverlight assemblies are not binary compatible to .NET

assemblies and thus, sandbox extensions need to be compiled in a special way and

cannot be reused as server-side or client-side extensions.

This section showed scenarios for the integration of server-side, client-side, and

sandbox extensions into a coherent web application. The next section explains the

extended component model for the web, which enriches the base component model to

support plugin-based distributed multi-user web applications.

Figure 4.8: User-specific composition composed by server-

side, client-side and sandbox extensions

Chapter 5

95

5 The Extended Plux Component Model for

the Web

This chapter describes the extended Plux component model for the web. The

extended deployment standard specifies user-specific repositories as well as a

hierarchical discovery mechanism for local and for distributed plugins. The

extended composition standard specifies an individual composition state per

user and a distribution mechanism that makes the distribution of plugins

transparent to developers and to users. The extended interaction standard

specifies the communication between distributed extensions, including

distributed thread management, object data synchronization, and lifetime

management for distributed objects. As web support, multi-user support, and

distribution support is provided by the component model implementation, but

not by the developer, the metadata standard and the customization standard

remain the same as in the base component model.

The extended Plux component model for the web provides a set of specifications,

which enables Plux to build plugin-based distributed multi-user web applications, as

described in several usage scenarios in Chapter 4. The specifications of the extended

component model add to the specifications of the base component model described in

Chapter 3. Thus, everything that is specified in Chapter 3 still is valid in the extended

component model for the web.

Plux for the web combines the advantages of the component approach, the distribution

approach, and the web approach into a single coherent component model. It

aggregates the capabilities of these technologies to provide a more powerful

technology than developers would get, if they would combine these technologies

independently. The Plux component model for the web distinguishes itself from others

by the following characteristics:

Extensible web applications. Existing component technologies, such as CORBA, COM+,

Eclipse, OSGi, or MEF, do not target extensible web applications and thus they are not

supported. Although the Remote Application Platform (RAP) provides web support

for Eclipse, and in spite of the fact that other component technologies can be combined

with web application frameworks such as Java EE or ASP.NET to build component-

The Extended Plux Component

Model for the Web

The Extended Plux Component Model for the Web

96

based web applications, in both cases the composition of a web application cannot be

customized individually per user. Plux maintains an individual composition state per

user and thus enables users to extend and to reconfigure their web applications for

their specific needs.

Distribution and deployment. Many current component technologies and web application

frameworks provide support for component distribution. However, Plux stands out in

the way it deploys, composes, and interacts with distributed components. In other

technologies, deploying components requires developers or administrators to register

components in a registry, e.g., the windows registry for COM+, the RMI registry for

Java RMI, or a UDDI registry for web services. Moreover, in technologies such as

remoting, web services, or OSGi Remote Services, the developer needs to implement

particular access points in order to export a service to a distributed computer. In Plux,

the implementation of extensions remains the same, regardless of if they are plugged

locally on the same computer or remotely on other computers. Deploying extensions in

Plux just requires copying the respective plugins into a specific directory, while the

discovery mechanism integrates their extensions automatically into the application and

makes them available to other local and remote extensions without any extra

programming or configuration effort.

Automatic composition. In web application frameworks, the composition has to be done

programmatically, and in most component systems the composition is done by

configuration. In Plux, the composition is done automatically by the composer, which

uses the extensions' self-contained metadata to retrieve requirements and provisions

and to connect matching extensions automatically, even if they are distributed over

multiple computers. For this, the extended composition standard specifies an

automatic distributed composition process.

Automatic lifetime management. Current component technologies, which support

distributed components (e.g., CORBA, COM+, or OSGi), as well as technologies for

distributed computing (e.g., remoting or web services) do not track which components

are connected to each other. Thus, lifetime management usually resorts to one of the

following solutions: (1) either the application creates a new instance for an exported

service on every request and destroys it immediately afterwards, or (2) the application

provides a single instance (or a pool of instances) for an exported service, which is

created at startup time and exists as long as the service is available, or (3) the lifetime of

an exported service depends on a specified lease time, or (4) the exported service

supports distributed reference counting. The first three solutions provide automatic

lifetime management, i.e., the consumer of a service does not have to do additional

programming for lifetime management. However, if a service is created and destroyed

on every single request, it cannot preserve a state during sequential requests, i.e., such

a service is stateless. If a service is implemented by using just a single instance, it is

shared among all consumers and thus does not have a user-specific state. However, if a

service needs to be stateful, this requires an individual instance for every consumer.

Thus, the lifetime management of a service either depends on a lease time, which may

Metadata Standard

97

expire too soon, or the programmer needs to take care of the lifetime management

using reference counting. In Plux, the composition state maintains the instances of

extensions and their connections and thus reflects which extensions are in use and

which are not. This allows Plux to provide a distributed garbage collection mechanism

that destroys unused distributed extensions without the need for lease times or

reference counting.

Implementation transparency. Other technologies only provide location transparency or

access transparency for component distribution. If location transparency is provided,

developers need not know where a remote service is located, but method calls to it are

implemented differently than to local objects. If access transparency is provided,

location transparency is provided too, but method calls to remote services are

implemented in the same way as to local objects. Usually access transparency is

provided via proxy objects. However, developers must be aware that consecutive calls

may be executed in different threads on the remote side, or that serialized objects may

are duplicated multiple times, or that modifications to serialized objects do not get

synchronized with the original object. The Plux component model provides

implementation transparency for distributed extensions, which implies access

transparency and location transparency. To support implementation transparency,

Plux offers the following mechanisms: it provides distributed thread management, which

simulates a single coherent thread that is assembled from multiple distributed threads

that are linked together. It provides reference identity, which ensures that if an object is

transferred to a remote environment multiple times, the remote environment gets the

same reference to the remote object each time. Vice versa, if the remote object is

transferred back to the original environment, the original environment gets a reference

to the original object. Finally, it provides object data synchronization, which ensures that

if a serialized object is modified in a remote environment, the original object in the

original environment is updated too. Due to the support of implementation

transparency, remotely plugged extensions can be implemented in exactly the same

way as locally plugged extensions.

5.1 Metadata Standard

Extensions for distributed multi-user web applications are implemented in the same

way as extensions for single-user desktop applications. Therefore, Plux extensions can

be reused in single-user desktop applications as well as in distributed multi-user web

applications, regardless of if they are installed as server-side or as client-side

extensions. The distribution of extensions is transparent to the developer. Developers

just declare extensions by attaching the Extension attribute to classes and define the

extensions' requirements and provisions using the Slot and the Plug attributes

respectively, which was described in Section 3.1. The metadata standard of the

extended component model for the web does not add any further specifications for

extension declaration.

The Extended Plux Component Model for the Web

98

5.2 Deployment Standard

Extensions are deployed in plugins, and slot definitions are deployed in contracts.

Plugins and contracts are DLL assembly files, which are copied into discovery

directories and are discovered by an exchangeable discoverer mechanism (see

Section 3.2). In contrast to single-user desktop applications, in multi-user web

applications each discovered plugin and contract needs to be assigned to a specific

user. For this, the web discovery mechanism supports user-specific and user group-

specific plugin repositories. Furthermore, since these repositories can either reside on

the web server or on a remote computer, such as the user's client-side computer, the

discovery mechanism supports discovering distributed plugins and contracts.

5.2.1 User-specific Repositories

Users can extend their web applications with user-specific extensions, i.e., users can

install their individual set of server-side, client-side, and sandbox plugins. For this, a

server-side discoverer monitors user-specific plugin directories on the web server and

a client-side discoverer monitors a plugin directory for the user on the client-side.

Figure 5.1 shows an example with a server-side repository for two users named Markus

and Julia and an additional client-side repository for each user. Each user has its

individual instance of a server-side Discoverer extension and an individual instance of a

client-side Discoverer extension. The server-side Discoverer matches usernames with the

directory names in the repository to assign directories to users. Within a user directory,

Figure 5.1: Discovery of user-specific server-side, client-side, and sanbox plugins

Deployment Standard

99

server-side plugins and sandbox plugins are separated via subdirectories. Server-side

plugins are copied into the Server directory, while sandbox plugins, which are executed

on the client-side, are copied into the Client directory. User-specific contracts are

installed in the same way as user-specific plugins. Plugins and contracts can optionally

be separated in further subdirectories. The Discoverer monitors the directories for a

specific user and notifies the Plux core when new plugins or contracts are added or

when they are removed.

Client-side plugins are discovered with the client-side Discoverer extension, which is

plugged remotely to the Plux core when the client connects to the server (see

Section 5.4.2 Connection Establishment). The client-side discoverer matches the name

of the web application with the directory names of the client-side repository, monitors

the directory that belongs to the application, and notifies the Plux core when new

plugins or contracts are copied into the application directory or when they are

removed from there. In Figure 5.1 the name of the application is set to Time Recorder.

Thus, each client-side discoverer that is connected to this application monitors the Time

Recorder directory in the client-side repository.

The Discoverer extensions in Figure 5.1 are simplified. In the real implementation, each

of them has a slot for detector extensions as well as a slot for analyzer extensions, as it

was described in Section 3.2.

The directory layout, which is described above, is the default directory layout for

discoverer extensions. However, the discoverers can be customized, in order to assign

any directory to a user on the server-side, or to assign any directory to an application

on the client-side. Also the separation between server-side plugins and sandbox

plugins need not be done with subdirectories of a user directory, but can also be done

on a different directory level, e.g., on the outermost level of the plugin repository. As

the discovery mechanism is implemented with extensions, it can also be replaced with

other discoverer implementations, e.g., with a discoverer that retrieves discovery

information from a database.

5.2.2 Hierarchical Discovery

Although every user can install his individual set of plugin, the plugins for the base

application are usually the same for all users. As it would be inefficient to add all base

plugins to all user directories in the repository and because it would be challenging to

keep the base plugins for all users consistent on every version update, Plux supports

plugin directories that are shared among user groups. User groups are organized with a

user store. Each user group can have members, which can be users or again user

groups. Actually, the user store does not distinguish between users and user groups.

Therefore, also users can have subordinate members and thus maintain different sets of

plugins for a single web application. Vice versa, each user and user group can belong

to multiple user groups at the same time.

The Extended Plux Component Model for the Web

100

Figure 5.2 shows an example of a server-side plugin repository with various directories

for users and user groups. As user groups (and users) can have multiple members and

since members can belong to multiple user groups at the same time, directories for user

groups and for users are organized in a flat way in the plugin repository. The user

store defines the hierarchy of users and user groups. To keep the example simple, in

Figure 5.2 each user directory only contains server-side plugins, but does not

distinguish between server-side and sandbox plugins.

The user store defines a user group Base, to which all users and user groups belong.

Base has two subgroups named Worker and Anonymous. The users Markus and Julia

belong to the group Worker and all anonymous users automatically belong to the group

Anonymous.

Plugins are installed for a user or for a user group by copying them into the right

directory. To uninstall them, they are removed from the directory. However, in some

situations a plugin that is installed for a certain user group must be made unaccessible

for a subgroup of this user group. In such a case, the plugin cannot just be removed

from the directory, because this would affect also other users. Thus, besides the plugin

repository the discoverer optionally can use a configuration file to adjust the set of

detected plugins for a user. With the configuration file, administrators can include or

exclude plugins for users or user groups. In the example of Figure 5.2, the plugin

TimeRedorder.dll is excluded for anonymous users and the plugin DataStore.dll is

excluded for users in the group Worker.

Figure 5.2: Discovery of user-specific and user group-specific plugins

using a user store and a configuration file

Composition Standard

101

5.3 Composition Standard

The composition standard specifies how the composer connects extensions and how

the composition of an application is maintained by the composition state. Section 3.3

described how the composition state can be used by hosts to retrieve their contributors,

which composition operations are used to compose an application, which composition

events are raised during the composition process, and how the composer supports

automatic composition, programmatic composition, behavior-guided composition, and

user-guided composition.

In the extended component model for the web, the composer uses the same

composition operations, raises the same composition events and performs the same

composition process as specified in the base component model. However, the extended

composition standard additionally specifies an individual composition state per user,

which maintains user-specific extensions in separate user scopes. Furthermore, it

specifies a distributed composition process, which is used for automatic composition,

programmatic composition, and behavior-guided composition. To provide developers

with transparent extension distribution, remote extensions can be accessed in the same

way as local extensions via a distributed composition state.

5.3.1 Composition State

The composition state stores instances of extensions and their connections. As users are

able to plug their user-specific extensions, the composition states of different users

vary from each other and need to be maintained individually per user, which is

described in the subsection Multi-user Composition State.

Extensions can be distributed over multiple computers. Thus, the composition state

needs to be accessible for remote extensions in the same way as it is for local

extensions. How the composition state is distributed over multiple computers is

described in the subsection Distributed Composition State.

Multi-user Composition State

Plux maintains an individual composition state per user, i.e., every user has its own

instances of extensions and its own connections between extensions. This enables users

to plug their user-specific extensions, and to unplug extensions without affecting other

users. However, providing a multi-user composition state is not just about storing

individual instances of extensions and their connections, but also about considering the

following issues:

 User-specific (and group-specific) extensions must only be accessible by those users,

who are supposed to access them. Users must not be able to access user-specific

extensions from other users, neither via the Plux infrastructure, nor via any

The Extended Plux Component Model for the Web

102

tricks, such as by instantiating them manually with their constructors or by the

use of reflection.

 User-specific extensions must not lead to conflicts. If different users install different

extensions with equal type names (and equal namespaces), Plux needs to

distinguish between them and connect the right extensions for every user.

 User-specific extensions must not cause errors that affect others. Enabling user-

specific extensions increases the risk of executing untested or buggy code.

Nevertheless, in the event of a crash that is caused by a user-specific extension,

Plux must ensure that other users are not affected.

In order to provide a solution for these issues, the multi-user composition state

allocates separate memory areas for user-specific and for group-specific extensions. As

the current implementation of the component model is realized with .NET, the runtime

infrastructure uses AppDomains [Microsoft, 2013b] to load extensions into different

memory areas. Each user-specific (and group-specific) extension is instantiated within

a user-specific (or group-specific) AppDomain, i.e., extensions that are installed for the

same user (or the same user group) are executed in the same AppDomain, whereas

other extensions are executed in different AppDomains.

Figure 5.3 shows an example with two user-specific composition states of the time

recorder application for the users Markus and Julia. Both are members of the user group

Worker. Worker is a subgroup of the user group Base (see Figure 5.2 on page 102).

Extensions that constitute the base application are installed for all users that are

members of the user group Base and thus are instantiated in the AppDomain that is

called Base. Users in the group Worker get the group-specific extension LimitedDataStore

as their data source, which is instantiated in the AppDomain Worker. The user Markus

has not plugged the Statistics extension of the base application, but instead uses its

user-specific extension CustomStatistics, which is instantiated in the AppDomain for all

user-specific extensions of Markus. Similar, Julia's user-specific extensions NotesControl

and Notes are instantiated in the user-specific AppDomain for Julia. As a result, the

composition state for a single user is divided into multiple AppDomains, e.g., for the

user Markus it is divided into the AppDomains Base, Worker, and Markus.

As extensions for different users are loaded into different AppDomains, the type

information of extensions is only available for entitled users. Thus, others cannot

instantiate them, neither via constructor calls, nor via reflection. Type conflicts between

user-specific plugins of different users cannot happen too, because user-specific types

are loaded into different AppDomains. Finally, due to user-specific AppDomains,

errors that are caused by user-specific extensions do not lead to crashes that affect

others; even if extensions crash so badly that the hosting AppDomain crashes, too.

Despite the fact that extensions are instantiated in different AppDomains, multiple

instances of the same extension always are created in the same AppDomain, even if

Composition Standard

103

they are created for different users. For example in Figure 5.3 the extension

LimitedDataStore is instantiated multiple times, one instance for each user that is a

member of the user group Worker. However, as all instances of the same extension are

executed in the same AppDomain, developers still can implement extensions that share

data and common resources between different users within the AppDomain.

Unfortunately, if extensions are instantiated in different AppDomains, they cause

additional communication overhead, when they call methods across AppDomain

boundaries. However, extensions only are divided into separate AppDomains, if user-

specific (or group-specific) extensions are plugged to an application, i.e., for a

composition without any user-specific extension, there is only one AppDomain and

thus there is no extra communication overhead. Even if user-specific extensions are

plugged to an application, there is no communication overhead between the extensions

of the base application. Only method calls from base extensions to user-specific

extensions are affected by the overhead. Also, since extensions that are installed for the

Figure 5.3: Individual composition states per user with extensions that are

executed in user-specific and group-specific memory areas

The Extended Plux Component Model for the Web

104

same user group are loaded into the same AppDomain, there is only communication

overhead between extensions that are installed for different user groups.

As each plugin is assigned to a certain user (or user group), each plugin is only loaded

once, namely in the AppDomain for this user (or user group). However, contracts are

handled differently than plugins. As contracts contain slot definitions, which specify

the interfaces of slots, the type information of a contract is required by both, the hosts,

which use the interface to access their plugged contributors, and the contributors,

which implement the interface of a slot definition. In order to enable a host of the base

application to open a slot, the contract with the slot definition for this slot must be

installed for the base application. However, such a contract is not only loaded in the

Base AppDomain, for which it is installed, but also in all AppDomains that contain a

contributor with a plug for a slot that is defined in this contract. For example, in

Figure 5.3, the contract with the slot definition DataStore is installed for the user group

Base, but loaded in all AppDomains, because the extensions Recorder and Statistics open

this slot in the Base AppDomain, the user-specific extensions for Markus and for Julia

open this slot in their user-specific AppDomains, and the extension LimitedDataStore

for the user group Worker provides a plug for this slot. The contract that contains the

Statistics slot definition also needs to be installed for the base application. However, as

only the user-specific extension CustomStatistics uses this slot (besides the base

extensions), only the AppDomains Base and Markus load this contract.

As user group contracts are also loaded into the AppDomains of user group members,

their type information is accessible by user-specific plugins of those members. As a

result, user-specific plugins can use the implementation of contracts installed for

higher-level user groups. Thus, contracts should only contain interface descriptions,

but not sensitive library implementations. Type conflicts can never occur between the

contracts of different users. However, they can occur between contracts of a user and

contracts of a higher-level user group. In that case, only the slots and plugs can be used

that reference the contract that was loaded first. For slots and plugs that cannot be used

because of a type conflict, the logger writes a message to the log output. Similar to type

conflicts, as user-specific contracts are not loaded in higher-level group-specific

AppDomains, they cannot lead to errors that affect other users. However, higher-level

group-specific contracts can lead to errors in AppDomains for all members in the user

group. Thus, the permission to install group-specific contracts should be granted only

to trusted people. This decreases the risk of installing error-prone contracts, as well as

the risk of installing contracts that provide sensitive implementations to members of a

user group that should not have access to them.

To increase performance on the server, the communication overhead between

AppDomains can be avoided by disabling the separation of user-specific plugins into

different AppDomains. This may is reasonable if all server-side plugins are maintained

by a single administrator. Even if all plugins are executed in the same AppDomain,

users can still have their individual sets of plugins as well as their individual

Composition Standard

105

composition states. And even if only the administrator is allowed to install plugins on

the web server, users can still plug their individual client-side plugins by themselves.

Distributed Composition State

The distributed composition state enables hosts to access remotely plugged

contributors in the same way as they access locally plugged contributors. Furthermore,

the composer uses the distributed composition state for the distributed composition

process (see Section 5.3.2) that plugs contributors form remote computers to local

hosts, and vice versa.

Figure 5.4 shows an example of how a host accesses a remotely plugged contributor by

using the composition state. In (1) the extension object of the TimeRecorder uses its

meta-object to retrieve the meta-object of the plugged contributor MobileSync (2). Via

the retrieved meta-object the host gets a reference to the contributor's extension object

(3) and finally can call the contributor's methods (4).

However, the distributed composition state in Figure 5.4 cannot be implemented as it is

shown, because the extensions TimeRecorder and MobileSync are instantiated on

different computers and the Control slot of the of the TimeRecorder cannot have a direct

reference to the Control plug of the MobileSync extension. Thus, Figure 5.4 just shows a

logical view of the composition state as it appears to users and to developers.

Figure 5.5 on the next page shows how the actual distributed composition state is

implemented. On the server-side, the TimeRecorder references a copy of the client-side

MobileSync extension, while the client-side MobileSync extension is plugged into a copy

of the server-side TimeRecorder extension. Both meta-object copies reference a proxy

object instead of the original extension object. Thus, the whole composition state is

available both on the server and on the client.

When the server-side TimeRecorder wants to use the client-side MobileSync contributor,

it first retrieves the TimeRecorder meta-object (1), then the plugged copy of the

MobileSync meta-object (2) to get a reference to the MobileSync proxy object (3). When

the TimeRecorder calls a method on the MobileSync proxy object (4), the proxy uses the

Plux Runtime Coordinator, which is part of the composition infrastructure and handles

Figure 5.4: Logical view of the distributed composition state with meta-objects and

extension objects

The Extended Plux Component Model for the Web

106

the communication between distributed extensions, to forward the call to the remote

coordinator (6), and finally to call the method on the original extension object of the

client-side MobileSync contributor (7). The result is sent back in exactly the same way.

5.3.2 Composition Process

The composition process defines how extensions are composed to a coherent

application. Section 3.3 described how Plux performs automatic composition, i.e., how

the composer retrieves the extensions' requirements and provisions from their

metadata and automatically connects matching extensions. Furthermore, it described

programmatic composition, behavior-guided composition, and user-guided compo-

sition. The composition process for component-based web applications is the same as

described for the base component model. However, for distributed multi-user web

applications this composition process needs to be performed for multiple users as well

as for distributed extensions.

For distributed web applications Plux needs to compose extensions, which are located

on different computers. For this, the distributed composition process uses distributed

composer instances that are synchronized with a token passing scheme.

Multi-user Composition Process

Plux needs to compose a multi-user web application individually for each user. In

order to avoid interference between these composition processes, the composition

infrastructure instantiates individual composer instances that perform the multi-user

composition in parallel using a dedicated runtime thread per user (see Section 5.4.1

Thread Management).

Figure 5.5: Implementation of the distributed composition state

with meta-object copies and proxy objects

Composition Standard

107

Distributed Composition Process

The composition standard for the web specifies that extensions can be installed and

executed on different computers. Thus, the composition process needs to be

distributed, too, in order to instantiate extensions on different computers and connect

them to a single coherent web application.

As described in the base component model, the composition process is divided into

composition sequences, each of them performing a number of composition operations

for a specific extension to make it ready for use, i.e., they activate the extension and fill

its slots with contributors (see Section 3.3). The same happens in the distributed

composition process. However, the composition sequences are executed by a

distributed composer that comprises multiple synchronized composer instances, which

are located on different computers.

Plux uses a token passing scheme to coordinate the distributed instances of the

composer. The token is passed from one computer to another and indicates the active

environment with the composer instance that is allowed to perform the next

composition operation. As soon as an operation needs to be executed on a different

computer, the token is passed on. The token also coordinates the distributed runtime

thread (see Section 5.4.1), which simulates a single coherent thread that is distributed

across all connected environments. Only the environment that currently has the token

is enabled to execute code in the runtime thread, while all other environments are

blocking this thread. As the composition state can only be retrieved from within the

runtime thread (see Section 3.4.1), the distributed composition state (see Section 5.3.1)

only needs to be kept up to date in the environment that currently has the token. As a

result, the composition state is not updated after each performed composition

operation in all remote environments, but only when the token is passed to them. The

environment with the token always has full knowledge about the current composition

state and about all available extensions. Thus, the distributed composer does not

communicate with remote environments during the composition process until it

forwards the token to the next environment to perform a composition sequence for an

extension there or to execute a remote event handler for a raised composition event.

Figure 5.6 on the next page shows how the distributed composition process composes

the server-side TimeRecorder and remotely plugs the client-side MobileSync contributor

to the server-side host. In (a) the figure shows the composition state, before the

TimeRecorder host is activated. The server-side environment currently has the token

and thus is active. The active environment is indicated with a solid border and a

header above; the runtime thread on the client-side environment is currently blocked,

which is indicated with a dotted border and a header caption. As soon as a

composition sequence for the TimeRecorder is triggered, the server-side composer

instance activates the extension and fills its slot. In (b) the composition sequence is

finished, i.e., the TimeRecorder's extension object is instantiated and a copy of the meta-

object of the client-side MobileSync extension is plugged to the TimeRecorder. For this, it

The Extended Plux Component Model for the Web

108

Figure 5.6: Composing distributed extensions using token passing

Interaction Standard

109

was not necessary to pass the token to the client-side. Therefore, the composition state

on the client-side was not updated yet and still is empty.

When the TimeRecorder retrieves the MobileSync's extension object, the composition

sequence for MobileSync is triggered (see Host-triggered Composition Sequences in

Section 3.3.4). As MobilSync is a client-side extension, the composition sequence for this

extension needs to be performed there. Therefore the composer passes the token to the

client-side environment (c).

Every time when the token is passed from one environment to another, the

composition state is updated on the target environment that receives the token. Thus,

the composition state is transferred from the server-side to the client-side, whereat the

TimeRecorder's extension object is replaced by a proxy object there. In (d) the

composition process continues with performing the composition sequence for

MobileSync. The composition sequence instantiates the MoblieSync's extension object

and fills the TimeRecorder's slot. When the composition sequence is finished, the token

is passed back to the server-side environment (e). There, the server-side composition

state is updated with the activated MobileSync contributor, which now references a

proxy object. Finally the MobileSync proxy object is returned to the TimeRecorder, which

was requested in (b).

Although the distributed composition process is performed on distributed computers,

logically it is the same as the local composition process. Thus, all other specified

composition concepts, such as composition events, programmatic composition, or

behavior-guided composition, can be used in distributed composition in the same way

as in local composition.

5.4 Interaction Standard

The interaction standard specifies how extensions communicate with each other and

how they exchange data. Plux web applications are used by multiple users at the same

time, they are executed in sequential round trips using the request-response method,

and they can be distributed across multiple computers. Thus, the interaction standard

for the web is extended by additional specifications for thread management and by

specifications for communication to provide transparent distribution support. These

specifications enable developers to implement distributed extensions in the same way

as local extensions without considering threading or communication issues.

To describe the following specifications, this section uses several sequence diagrams.

As these sequence diagrams contain additional elements, which are not specified in the

Unified Modeling Language (UML) [OMG, 2011], Figure 5.7 on the next page explains the

elements that are used in the sequence diagrams below. A sequence diagram shows an

interaction between objects. Every object is represented by a vertical line, which is

called lifeline. The header of the lifeline denotes the name of the object's class. As

objects can be instantiated in different environments, sequence diagrams may contain

The Extended Plux Component Model for the Web

110

multiple environments, which are separated by Environment separators that are

represented with a dashed bold line. Each environment has an Environment name and a

unique Environment identifier.

Objects communicate with each other using messages. Synchronous messages are

processed in the same thread as the one in which they were sent. They are represented

by a solid line with a filled arrowhead. Asynchronous messages are processed in a

different thread as the one in which they were sent. They are represented by solid line

with an open arrowhead. Each message optionally can have Message arguments, which

are listed in parentheses after the message name. Return messages notify the sender of a

Synchronous message about the end of its execution and optionally pass a Result to

sender. Return messages are represented by a dashed line with an open arrowhead.

To describe multithreaded processes within a single sequence diagram, threads are

marked by Thread identifiers that are assigned to each Execution specification. Execution

specifications represent the execution of a message. Every thread identifier consists of

two parts that are separated by a dot. The first part is the identifier of the environment

in which the thread was started (i.e., the Environment identifier). The second part is a

consecutive number that is incremented for every new thread. The Environment

identifier is prepended in thread identifiers in order to allow every environment to

create new thread identifiers without synchronizing the consecutive number with

other environments. As the runtime thread is always the first thread in the

environment 1, it has the thread identifier 1.0. In some sequence diagrams the

consecutive number of a thread identifier is replaced by a letter, which represents a

variable and indicates a random thread, e.g., a thread from a thread pool.

In order to keep sequence diagrams simple, they do not describe alternative traces with

combined fragments. However, to indicate a choice of behavior at a certain point,

messages can be prefixed with a Message condition. Message conditions are expressions

within brackets that have to evaluate to true in order to start the interaction. The

sequence diagrams below only show traces in which the expression is always true,

Figure 5.7: Elements of a sequence diagram

Interaction Standard

111

other traces are shown in separate sequence diagrams in the appendix of the thesis.

Finally, State invariants indicate a certain state in the process and are represented by a

solid oval box containing a description of the current state.

5.4.1 Thread Management

To avoid complicated thread synchronization implementations in every extension, the

interaction standard specifies a dedicated runtime thread, which is the only thread that

is allowed to execute runtime operations, such as retrieving the composition state or

performing composition operations. Furthermore, extensions are only allowed to call

methods from other extensions in the runtime thread so that extensions do not have to

check whether they were called in the runtime thread, when they want to perform

operations on the composition state.

Since web applications are used by multiple users concurrently and since different

users should not interfere with each other, the interaction standard for the web

specifies a separate runtime thread per user. However, assigning a separate thread to

every user would be inefficient, because web applications are not running

continuously, but are rather executed in sequential round trips. A user interaction with

a web browser triggers a web request, which is sent to the web server. The web

application on the web server processes the request, and finally a response is sent back

to the browser. After such a round trip the web application is idle, until the next round

trip is triggered. If every user would have his own thread, this thread would have to

wait for the next request of the same user after every round trip. If threads are shared

among different users, they do not have to wait for a certain user, but can process

requests from other users in the meantime. Therefore the interaction standard for the

web specifies a multi-user runtime thread that is only assigned to a specific user during

a round trip, but is released afterwards to reuse it as runtime thread for another user.

Even though extensions can be distributed to different computers, operations on the

composition state still need to be executed in a single runtime thread. However, since

distributed applications are executed on different computers, they cannot be executed

within the same thread. Therefore the interaction standard specifies a distributed

runtime thread, which simulates a single coherent thread that comprises multiple

threads, which are located on connected environments and which are coordinated with

a token passing scheme.

Multi-user Runtime Thread

Web applications are executed in sequential round trips, where each round trip is

processed in a different thread that is taken from a common thread pool. As a result,

sequential round trips for a certain user are processed in different threads.

Nevertheless, the interaction standard specifies only a single runtime thread. In order

to reuse threads for different users and to restrict composition operations to the

The Extended Plux Component Model for the Web

112

runtime thread, the runtime thread is taken from a thread pool and needs to be

switched for consecutive round trips.

Plux provides a dispatcher, which is used to invoke method calls from any thread in

the runtime thread. The dispatcher can be acquired by any thread, but only by one at a

time. Acquiring the dispatcher makes the current thread the runtime thread. After

finishing a round trip, the dispatcher is released so that other threads can become the

runtime thread.

Figure 5.8 shows a sequence diagram that describes how a thread acquires the

dispatcher in order to become the runtime thread for processing a web request. The

sequence diagram uses state invariants to indicate whether the dispatcher currently is

Acquired or Released. As web applications can also be distributed, the runtime thread

can be distributed as well. The distributed runtime thread is coordinated with a token

that enables only one environment at a time to execute code in the runtime thread (see

Distributed Runtime Thread below). Although the web application in Figure 5.8 is not

distributed, the sequence diagram marks the positions with a Token state invariant

where the token is required for executing code in the runtime thread.

In (1) the Plux core receives a web request in an arbitrary thread 1.x via its Process

method. To make the executing thread the runtime thread, the method acquires the

dispatcher (2). After the dispatcher is acquired (3), the runtime thread id, which is

always 1.0, now is assigned to the current thread. Next, the dispatcher raises an

Acquired event, which is handled by the coordinator. The coordinator is responsible for

thread management and remote communication. It ensures that it has the token (4)

before the Acquire method returns to its caller. In other words, the coordinator blocks

the runtime thread of the current environment until it gets the token. If the token

would be missing in (4), the coordinator would request it from the connected

environments and would receive it, as soon as the dispatcher in the environment that

holds the token becomes idle.

Even though the core's Process method now is already executing in the runtime thread,

for error handling reasons, the core ensures that every code that is executed in the

runtime thread is initiated from a dispatcher operation. Thus, after the dispatcher is

acquired, the core calls the dispatcher's BeginInvoke method (5) to asynchronously

enqueue a dispatcher operation for the web application's Process method to the

operation queue of the dispatcher. Each time, when an operation is enqueued, the

coordinator handles the dispatcher's OpEnqueued event (6). OpEnqueued checks whether

the current environment has the token. In Figure 5.8 this cannot happen, because the

token was already retrieved in (4), and can only be passed to other environments in the

runtime thread, which is currently under the control of the core's Process method.

In (7) the core calls the dispatcher's Run method to start executing the enqueued

dispatcher operation. The argument of Run specifies whether the dispatcher should

wait when its operation queue is empty. Passing the argument value false causes the

Run method to return to the caller as soon as the dispatcher is idle. The dispatcher

Interaction Standard

113

operation in the queue invokes the Process method of the web application (8). After

executing the Process operation is finished, the dispatcher notifies the coordinator (9) to

check whether the next dispatcher operation was enqueued from a remote

environment. If so, the coordinator would pass the token to that environment and

continue execution there. As the dispatcher's Run method does not return to the caller

until all dispatcher operations are finished, processing a single web request can include

the invocation of further operations during one round trip.

When the dispatcher is finished, the core releases the dispatcher (10) and the current

runtime thread becomes the original thread 1.x again (11). Finally, in (12) the response

for the request is returned to the caller of the core's Process method.

The sequence diagram in Figure 5.8 shows the idea of acquiring and releasing the

dispatcher to swap the runtime thread. However, this sequence diagram is simplified;

the full sequence diagram can be found in Appendix B: Runtime Procedures.

Figure 5.8: Acquiring the dispatcher to process a web request in the runtime thread

The Extended Plux Component Model for the Web

114

Distributed Runtime Thread

In order to be able to distribute web applications across multiple computers, the

interaction standard specifies a distributed runtime thread. The distributed runtime

thread consists of multiple distributed threads that are synchronized with each other

by the use of a token. It simulates a single coherent thread where each connected

environment has one thread that constitutes the local runtime thread. Only the local

runtime thread of the environment that currently has the token is allowed to execute

code, while other local runtime threads have to wait until the token is passed to their

environment.

Figure 5.9 shows a sequence diagram that describes how an operation, which involves

two environments (e.g., a distributed method call), is executed in the runtime thread.

At the beginning the Server environment has the token (1) and thus is allowed to

execute code in the runtime thread. As the Client currently does not have the token (2),

the Client coordinator called Wait (3) in its local runtime thread, after it has sent the

token to another environment. Wait blocks the thread until it gets a signal to resume.

In (4) a proxy object's Do method is called in the runtime thread on the Server. As the

target object lives on the Client, the operation needs to be executed there. The proxy

forwards the call to the coordinator on the Server (5), which sends a Call message with

Figure 5.9: Executing a remote operation in the distributed runtime thread

Interaction Standard

115

the thread id, the token, the operation to be called, and the operation's arguments to

the Client (6). After the message is sent, the Server does not have the token anymore

and thus the coordinator blocks the runtime thread by calling Wait (7).

In the meantime the Client coordinator receives the message in a background thread for

communication (8). Communication threads vary for each received message, which is

indicated by the variable x in the thread id. As the message contains the token for the

runtime thread, the Client resumes the local runtime thread (9) to execute the received

operation by calling the method Do on the target object (10). After the operation is

finished, the coordinator sends a Reply message with the runtime thread id and the

Result of the operation to the Server (11). As the token is sent with the Reply message,

the runtime thread on the Client is blocked again (12). When the Server receives the

message with the token in the communication thread 1.y (13), the coordinator resumes

the runtime thread (14) and returns the received result to the proxy (15). Finally, the

proxy returns the result to the caller of the method Do (16).

5.4.2 Connection Establishment

Web applications are executed on a web server and are accessed via a web browser on

a client-side computer. In order to allow a server-side web application to integrate

client-side plugins, both, the web server and the web browser, must use a Plux runtime

infrastructure that is connected to each other. This section describes how the server-

side runtime is started by the web server, and how the browser connects the client-side

runtime to the server. After the server-side runtime and the client-side runtime are

connected, they remain connected until the user terminates the session or the session is

terminated because of a timeout.

When a web application is accessed via a web browser, the web server renders a web

page and replies it to the web browser, which displays the web page to the user. If such

a web page contains a Plux web control (see Appendix A: Hosting Plux Web

Applications), the web control starts the Plux runtime on the server, when it is

rendered for the first time. Furthermore, the web control inserts the output of the Plux

web application, which is plugged into the Application slot of the Plux Core extension,

into the web page on every round trip. If the client-side web browser has installed a

Plux browser plugin, the web browser detects that the received web page contains

content of a Plux web application and connects a client-side runtime to the server-side

runtime, if the user has installed client-side plugins for the web application.

Figure 5.10 on the next page shows how the runtime infrastructure of a distributed

web application is assembled when the web application is accessed by a user for the

first time. In (1) the user triggers the start of the web application by entering a web

address into his web browser on the Client. The web browser sends a request to the

web server. During rendering the web page on the Server a Plux web control creates the

server-side runtime, if it is not already created. (3). While starting the runtime (4), it

discovers the server-side plugins for the current user and composes the web

The Extended Plux Component Model for the Web

116

application. Afterwards, the web application processes the web request (5) and inserts

the result into a response message, which finally is replied to the web browser (6).

The web browser receives the response and detects that it was rendered by a Plux web

application. As the client-side computer has installed plugins for the web application,

the browser does not yet display the web page, but rather instantiates the client-side

runtime (7) and calls Connect with the address of the server-side runtime as an

argument (8). The address of the server-side runtime is retrieved from the response

message of the web server (see below). The client-side runtime sends a Connect

message to the server-side runtime, which replies with an Accept message (9). After

connecting the runtimes, the token is passed from the server-side to the client-side

runtime, which is now prepared to be started in the runtime thread. By starting the

client-side runtime (10) the client-side extensions get plugged to the web application.

As the web application has been changed, the web page needs to be rendered again.

Thus, the browser resends the web request to the web server again and the web

application processes it for a second time. Finally, the web server replies the new

response to the web browser, which now displays the web page to the user. As the

Figure 5.10: Assembling a distributed runtime infrastucture

Interaction Standard

117

client-side runtime now is connected to the server, subsequent requests only have to be

processed once.

In order to allow the client-side browser plugin to detect that a web server runs a Plux

web application, the Plux web control renders a script tag with a custom MIME type

[Freed and Borenstein, 1996] for Plux applications. Furthermore, the script tag contains

the connection string that is used to connect the client-side runtime to the server.

Listing 5.1 shows the output of a Plux web control within a form tag that was rendered

by an ASP.NET web page. The web control inserts the script tag with the MIME type

application/plux, which indicates that the content of the following div tag is rendered by

a Plux web application. Additionally, the source attribute of the script tag provides the

connection address plux://timerecorder.jku.at:25400?session=2658135&app=TimeRecorder,

which is used by the browser plugin to connect the client-side and the server-side

runtime. The address is a Unified Resource Identifier (URI) [Berners-Lee et al., 2005] that

starts with the scheme plux, followed by the address at which the server-side runtime

is listening for new connections. The query contains the session id and the application

name, which are used by the connection listener to assign incoming connections to the

correct runtime instance on the Server. After the script tag, the web control appends the

output of the web application, which is wrapped within a div tag with an id that

comprises the keyword plux and the application name, which is TimeRecorder.

Similar to client-side runtimes, if the server discovers sandbox plugins, which need to

be executed in a Silverlight runtime on the client, the web control renders a further

script tag (again containing the connection address) that starts the Silverlight runtime.

The Silverlight runtime connects to the server-side runtime. Then the server-side

runtime transfers the sandbox plugins to the client-side and the sandbox extensions are

remotely plugged to the distributed web application.

<form method="post" action="TimeRecorder.aspx" id="form1">
 ...

 <script type="application/plux"
 src="plux://timerecorder.jku.at:25400
 ?session=2658135&app=TimeRecorder" />

 <div id="plux:TimeRecorder">
 <!-- Plux Web Application -->
 ...
 </div>

 ...

</form>

Listing 5.1: The output of a rendered web application including a script tag with

a custom MIME type for Plux applications and a source attribute

that provides an address for connecting a remote runtime node

The Extended Plux Component Model for the Web

118

5.4.3 Communication Operations

In Plux, the runtime coordinator is responsible for thread management and

communication between connected runtime nodes. For this, it uses a set of

communication operations, which are described in this section. The coordinator uses

channels to transfer messages from one environment to another. Channels provide an

abstraction from the transport layer and are exchangeable. The current implementation

of the component model uses channels that are connected via sockets and

communicate via the Transmission Control Protocol (TCP) [Postel, 1981].

Plux distinguishes between target operations that are sent to a specific target

environment to be executed there and token operations that can be executed on any

environment that currently has the token. An environment without the token does not

know which environment currently has the token. Thus, token operations are sent to

one environment after another, until the environment with the token receives them.

Every environment that forwards a token operation to another environment

temporarily stores that operation until it either receives a reply message indicating that

the operation was executed or until it receives the token to execute the operation itself.

This is necessary because the token might be on the way to an environment, which just

forwarded the token operation. In that case, token operations would not be executed

by any environment if the operation would not be temporarily stored. Figure 5.11

shows an example.

In the example of Figure 5.11 a runtime on an Application Server and a runtime on a

Client computer are connected to a runtime on a Web Server. The coordinator of the

Application Server needs to execute a token operation TokenOp in the thread 2.1 (1). As

the environment currently does not have the token, it forwards the operation to the

Web Server (2) and stores the operation (3) before it waits for a reply (4).

When the Web Server receives the token operation, it does not have the token, too, and

thus forwards the operation to the Client (5), and stores the operation (6). At the same

time, the Client, which currently has the token, is executing code in the runtime thread

1.0 and sends a target operation to the Web Server (7). As the target operation is sent in

the runtime thread, the token is passed to the Web Server, too. Thus, the Client does not

have the token anymore (8) and blocks the runtime thread (9). Now the Client receives

the token operation (10). As it does not have the token anymore and as it is not

connected to any environment that has not yet received the token operation, it replies a

message to the Web Server that the token operation is still pending (11). In order that an

environment knows to which environments the token operation was already sent, the

coordinator appends the set of visited environments to messages for token operations.

In the meantime the Web Server received the target operation with the token (12), which

was sent by the Client, in a communication thread 1.y. As the Web Server has stored the

pending token operation, it can now start executing it in the thread 2.1 (13), which is

the thread in which the operation was sent from the Application Server. The

communication thread 1.y has to wait (14) until the token operation is finished, before

Interaction Standard

119

it is allowed to start executing the target operation. If it would not wait and start the

target operation in parallel, the token might be sent to another environment while

executing the target operation. In this case, the token operation would be executed

twice. On executing the token operation, the coordinator removes it from the pending

operations store (15) and sends a Reply message to the Application Server that the token

operation has finished executing successfully (16).

When the Application Server receives the Reply message, it removes the finished token

operation from its operation store (17) and resumes the waiting thread 2.1 (18). If the

Application Server would receive a Reply message that reports that the operation is still

pending, it would not remove the operation from the store, but would forward it to the

next connected environment instead.

After the Web Server has sent the Reply message, it resumes the communication

thread 1.y (20) to start the pending target operation in the runtime thread 1.0 (21). At

this point, processing the TargetOp message has finished and the coordinator can

process the next message, which is the Reply message from the Client that reports that

the token operation is still pending (22). Becauses the operation is already executed and

removed from the pending operations store, the Web Server ignores the message. If the

Figure 5.11: Executing a token operation on the environment with the token

The Extended Plux Component Model for the Web

120

token operation would still be stored, the Web Server would send the operation to the

next environment that did not yet receive the operation. If there would be no

environment left, it would forward the Reply message with the argument Pending to the

Application Server. After executing the target operation (23), the result and the token

will be replied back to the Client computer (not shown).

Each operation, whether it is a target operation or token operation, is answered by a

Reply message, which returns a result to the sender. The reply contains an operation

status as well as result arguments. The status can be Success, Pending, or Exception, the

result arguments depend on the status:

 Success is replied if the execution of the operation was completed successfully.

In this case, the result arguments are operation-specific and are described in the

subsections for the different operations below.

 Pending is replied if the operation was not executed, because the target

environment for an operation was not found. This can happen for token

operations, if the token was not in any of the environments, to which the

operation was already sent. If an environment receives a reply with the status

Pending, it forwards the operation to the next unvisited environment. The result

argument is the set of already visited environments.

 Exception is replied if the execution of an operation raised an exception. The

result arguments contain the exception object, which is then raised by the

environment that originally sent the operation.

In order to let the receiver of an operation know in which thread an operation needs to

be executed, each operation contains the thread id of the thread in which the operation

was sent. Vice versa, in order to let the receiver of a reply know which thread should

be continued, each reply contains the thread id, too.

The following subsections list the different communication operations. Each subsection

describes the purpose of the operation, which parameters it needs, and which results it

returns by the reply message.

Call

Call is a target operation, which is used to instruct the coordinator of a specific target

environment to call a method of a given target object. The arguments comprise an

object identifier, which references the target object on the target environment (see

Section 5.4.6 Object Reference Identity), the method to be called, and an array of

arguments that are passed to the method, when it is called. The reply message contains

the return value of the executed method, or no result arguments, if the method does

not have a return type.

Interaction Standard

121

The Call operation is used by proxy objects to forward method calls from remote

environments to the original object on the original environment. Furthermore, the Call

operation is used by the composer for the distributed composition process. For

example, the composer starts a composition sequence for a remote extension by calling

the Activate composition operation on the composer of the remote environment with

the extension as an argument.

Invoke

Invoke is a token operation that is used to send a dispatcher operation to the

environment which currently has the token. As only the dispatcher in the environment

with the token has a valid state of its operation queue, it is the only environment that is

allowed to enqueue new dispatcher operations. The argument of Invoke is the

dispatcher operation to be enqueued. The reply only comprises the operation status,

but has no additional result arguments.

The Invoke operation is used by the coordinator, when it handles the dispatcher's

OpEnqueued event. If the environment, in which the operation is invoked, does not

have the token, the operation is sent to the environment with the token. As soon as the

operation is about to be executed, the token is passed to the original environment and

the dispatcher operation is executed there.

GetToken

GetToken is a token operation, which is used to request the token in order to continue

execution in the runtime thread. It marks the token to be sent to the sender of GetToken,

as soon as the runtime thread is idle. GetToken has no arguments and no return value.

The GetToken operation is used by the coordinator, when it handles the dispatcher's

Acquired event. If the coordinator does not have the token, it blocks the runtime thread

and sends the token request to the environment with the token. When the sender

receives the token, it resumes the runtime thread to continue executing.

SetToken

SetToken is a target operation, which is used to pass the token to a specific target

environment in order to continue executing the runtime thread there. This operation

can only be sent from the environment that has the token. After sending the operation,

the environment does not have the token anymore and thus blocks the local runtime

thread. The argument of SetToken is the token. The reply has no operation-specific

result arguments.

The SetToken operation is used to send the token to another environment when the

runtime thread becomes idle and the token was requested by this other environment

before. It is also used when an upcoming dispatcher operation was enqueued from a

remote environment and needs to be executed there.

The Extended Plux Component Model for the Web

122

Disconnect

Disconnect is a target operation, which disconnects the sender environment from the

target environment. As disconnecting an environment changes the topology of the

distributed runtime, this operation only can be performed in the runtime thread when

it is idle. Otherwise, disconnecting an environment would disturb the execution of a

communication operation. Disconnect has an argument that specifies whether the

receiver should keep the token. When a runtime is disconnecting its last connection, it

instructs the receiver not to return the token in the Reply message, even if it is sent in

the runtime thread. The result arguments of the reply either contain the token, or not.

The Disconnect operation is used by the coordinator, after a runtime closed down. After

the operation was sent to the last connected environment, the token stays on this

remote environment and the local coordinator releases the dispatcher. Finally the

former local runtime thread terminates, too.

5.4.4 Object Transmission Mode

Objects that are transferred from one environment to another exist on multiple

environments and are called distributed objects. For distributed objects the remote

environment either creates a copy of original object, which is then called a

serialized object, or it creates a proxy object for the original object, which is then called a

remote object. This section describes the difference between serialized objects and

remote objects and which of them is used for which data type.

Serialized Objects

Serialized objects are completely transferred to a remote environment, i.e., the data of

all their fields gets serialized, transferred to the remote environment, and deserialized

there. As the remote environment has a copy of the original object, method calls on

serialized objects are executed locally. Thus, the call and its arguments need not be

forwarded to the original environment.

The advantage of serialized objects is that they do not cause any communication

overhead for method calls. However, the disadvantages are that they cause more

communication overhead when they are transferred themselves, that the

implementation type of a serialized object has to be available on the remote

environment in order to be able to instantiate the object, and that modifications on the

serialized object have to be synchronized with the original object in order to keep the

objects consistent.

Objects are transferred as serialized objects if they have one of the following data types:

 Value types. Value types are integer types, floating-point types, the boolean type,

user-defined structs, and enumeration types.

Interaction Standard

123

 Types that are decorated with the Serializable attribute. Classes that are decorated

with the Serializable attribute are serialized and deserialized using reflection.

Listing 5.2 shows an example of a TimeRecord class that is decorated with the

Serializable attribute.

 Types that implement the interface ISerializable. Classes that implement the

ISerializabe interface are serialized using the interface method GetObjectData.

The serializer calls this method and passes a SerilizationInfo object as an

argument. The object writes its data into the SerilizationInfo object, which then

gets serialized. To deserialize such an object on the remote environment, the

serializer uses a specific constructor that gets the SerilizationInfo object as an

argument. Listing 5.3 shows an example of a TimeRecord class that implements

the ISerializable interface.

Remote Objects

Remote objects are not copied to a remote environment. Thus, their data is not

transferred, but only their data type, which describes the object's interface. The remote

environment creates a proxy object, which forwards method calls to the original object.

As method calls are eventually executed in the original environment, arguments need

to be transferred on each method call.

The advantages of remote objects are that they cause low communication overhead on

object transfer, that only the interface types need to be available on the remote

environment needs, and that there is no need for synchronization if these objects get

modified, because the state of remote objects is only stored in the original object.

However, the disadvantages of remote objects are that they cause communication

overhead on every method call and that they are difficult to debug.

[Serializable]
class TimeRecord {
 DateTime start;
 DateTime end;
}

Listing 5.2: TimeRecord class decorated with the Serializable attribute

class TimeRecord : ISerializable {
 DateTime start;
 DateTime end;
 TimeRecord(SerilizationInfo info) { ... }
 void GetObjectData(SerilizationInfo info) { ... }
}

Listing 5.3: TimeRecord class that implements the ISerializable interface

The Extended Plux Component Model for the Web

124

Objects are transferred as remote objects if they have one of the following data types:

 Reference types that are not marked with the Serializable attribute and do not

implement the ISerializable interface. Thus, every object of a reference type that is

not transferred as a serialized object is transferred as a remote object.

 Reference types that cannot be created in the remote environment. Even if a class is

implemented to be serializable, the serializer creates a remote object if the

implementation type is missing on the remote environment.

Customized Object Transmission

For some objects, such as objects of the types Assembly, Type, MethodInfo, or Delegate, it

is neither possible to transfer them as serialized objects nor as remote objects. For those

objects, the serializer uses a custom transmission mode, which is implemented by

custom formatters (see Section 5.4.5) that are registered for a set of specific data types.

By using custom formatters, applications can be made interoperable between different

technologies. For example, a Type object or a List object in a .NET environment can be

transferred to a Class object or to an ArrayList object in a Java environment. Even

though a Java implementation of the Plux component model is part of our future work,

objects of several .NET library classes (e.g. List, Dictionary, or HashSet) are transferred

by custom formatters because they can be serialized in a more compact way as if they

would just serialize their fields via reflection.

Furthermore, since it depends on an object's data type, if the object is transferred as a

serialized object or as a remote object, the implementer of the data type determines the

transmission mode. However, in some situations a developer wants to specify the

transmission mode of existing data types. In this case, he can use custom formatters

that transfer distributed objects in the desired way.

5.4.5 Object Transmission Format

The interaction standard specifies a technology-independent object transmission

format that can be written in different languages. The current implementation of the

Plux component model provides writer and reader implementations for XML and for

the more compact Plux transmission language, which is aligned to the transmission

format. This section describes the structure of the transmission format, the Plux

transmission language, and the format for common data types.

The transmission format comprises the entities Elements, Properties, Collections, and

Literals:

 Elements map to objects, types, fields, and to any further entities that are used to

describe the data. Elements comprise an element kind, an optional identifier

and a set of properties.

Interaction Standard

125

 Properties are key/value pairs, where the value can be an element, a collection,

or a literal.

 Collections are homogenous sequences containing a number of elements, a

number of collections, or a number of literals. Collections can be empty.

 Literals represent simple values such as numbers, booleans, or strings.

The Plux serializer uses the top-level element kinds Object, Type, Method, Assembly,

Array, Delegate, Null, Proxy, Destroyed, and Custom. These elements are serialized and

deserialized by appropriate formatters. Each formatter can define custom element

kinds for its sub-elements. As the output of each custom formatter is wrapped within a

Custom element, they need not care about name clashes of elements with those of other

formatters. Property keys only need to be unique within the same element, which is

always formatted by the same formatter.

In order to allow two connected runtimes to communicate with each other, they have

to use the same formatters. Thus, at connection time the connecting runtime node

sends a list of its registered formatters in the connect message. The runtime that

receives the connect message compares the formatter list with its registered formatters.

Only if they match, the receiver replies with an accept message, otherwise it replies

with a reject message containing a list of missing formatters.

Plux Transmission Language

The Plux transmission language is designed to represent the entities described above in

a compact way. It is text-based and readable by humans. Listing 5.4 shows its

grammar. The basic elements of the language are kind, identifier, key, and value, which

can be any sequence of characters. Special characters like (,), [,], {, }, <, >, ", \ have to

be escaped with an backslash (\). An element starts with its element kind followed by an

optional identifier and an optional property list. The identifier is enclosed in angle

brackets; the property list is enclosed in braces and contains one or multiple properties.

A property starts with its property key, followed by its value that is enclosed in

parentheses. A property value can be an element, a collection, or a literal. A collection is

enclosed in brackets and contains a list of elements, a list of collections, or a list of literals.

A literal is a string that is enclosed in double quotes.

Element = kind ['<' identifier '>'] ['{' Property {Property} '}'].

Property = key '(' (Element | Collection | Literal) ')'.

Collection = '[' ({Element} | {Collection} | {Literal}) ']'.

Literal = '"' value '"'.

Listing 5.4: Grammar of the Plux transmission language

The Extended Plux Component Model for the Web

126

The following subsection uses the Plux transmission language to describe the output of

formatters for common data types. The formatters follow a naming convention

according to which element kinds start with uppercase letters while property keys start

with lowercase letters. Since there are only a few top-level element kinds and since

property names only need to be unique within the same elements, the formatters use

shortcuts for element kinds and property keys.

Format Example

Listing 5.5 shows a part of the implementation of the Call operation and how it is

instantiated and assigned to an op variable. Figure 5.12 shows how this object is

serialized by the object formatter. The class Call inherits the base class Operation and

has the field method of type String and the field args of type Object[]. Further fields are

not shown. The base class Operation implements the interface IOperation and has the

field threadId of type String.

Figure 5.12 describes the format of the serialized operation object from Listing 5.5. The

object was formatted with the object formatter, which is used for objects without a

custom formatter. The object's type was formatted with the type formatter. The object

formatter generates an Object element with an object identifier 1.1 that is unique for

every application run (see Section 5.4.6 Object Reference Identity). The Object element

has a type property (for the object's type) containing a Type element as well as a levels

property containing a collection of Level elements for all inheritance levels with the

field values for the respective inheritance level.

As types are objects too, the Type element has a unique object identifier 1.2. Type

elements have the properties assembly, name, generic types, and interfaces. The assembly

property contains an Assembly element, which is formatted by the assembly formatter.

The name property contains the type name, which is the literal Call. Only if a type is

generic, the formatter generates a generic types property that contains a collection of

Type elements that describe the generic type arguments. If a type implements one or

more interfaces the formatter generates the interfaces property that contains the

interface types. Interface types are added in order to allow the serializer to create a

proxy that implements these interfaces, if the implementation type cannot be loaded on

the target environment.

class Call : Operation { class Operation : IOperation {
 String method; String threadId;
 Object[] args; ...
 ... }
}

IOperation op = new Call("SetAge", new object[] { 23 }, ...);

Listing 5.5: Implementation and instantiation of a Call operation

Interaction Standard

127

The Level elements of the Object element's levels property describe the field values at

every inheritance level. The inheritance level is given by the Level element's identifier.

Level 0 describes the fields of the object's implementation type; level 1 describes the

fields of the object's base type. Each Level element has a fields property that contains a

collection of Field elements. The identifier of a Field element is the field name and a

value property contains the field value, e.g. level 0 has the Field element method with a

value property containing the method name SetAge as literal. The Field element args has

a value property with an Array element.

5.4.6 Object Reference Identity

The interaction standard specifies object reference identity for distributed objects. For

objects that are transferred from one environment to another several times, the remote

environment must always get a reference to the same object copy in the case of a

serialized object, or the same proxy object in the case of a remote object. Thus, two

references that are the same in the original environment must be the same in the

remote environment, too. To achieve reference identity, a copy or a proxy is only

generated once and is reused for subsequent transmissions. Furthermore, if the object

on the remote environment is sent back to the original environment, the original

environment must receive the original object, but not a copy or a proxy.

Figure 5.13 on the next page describes how reference identity for distributed objects is

implemented by the use of reference stores. When an environment sends an object to a

remote environment (1), the serializer registers the object in its reference store (2) if it

was not already registered. By registering the object it gets a unique object id, which is

stored with the object. The identifier consists of the environment id and a consecutive

number. In Figure 5.13, the object A gets the object id 1.1. Next, the coordinator

transfers the serialized object and its object id to the remote environment (3). When the

remote environment receives the object (4), the serializer checks whether the object

Figure 5.12: Output of the object formatter and the type formatter

The Extended Plux Component Model for the Web

128

with the id 1.1 is already registered in the remote reference store. If not, the serializer

generates a new instance of the object and registers it with its id (5); otherwise it reuses

the already registered object. Finally, the remote environment can use the distributed

object (6).

When the distributed object is sent back to the original environment (7), the serializer

on the remote environment finds the object in the reference store (8) and thus serializes

it with id 1.1 and transfers it back (9). The original environment receives the message

with the serialized object (10) and finds the object id 1.1 in its reference store (11). Thus,

the serializer reuses the original object (12).

5.4.7 Object Data Synchronization

For serialized objects the serializer generates a copy of the original object on the remote

environment. If the object gets modified on the remote environment, the original object

is out of date. In order to keep the original object synchronized with all copies, Plux

updates all modified objects on each token pass. Thus, every object that is accessed

within the runtime thread is up to date.

Figure 5.14 shows how object data synchronization is implemented by the use of profile

stores. When a serialized object is sent to a remote environment (1) the serializer

generates a profile for the object (2), which contains a copy of the object's data and a

link to the reference in the reference store, which is generated on the first transfer,

too (3). Now the object gets serialized (4), transferred to the remote environment, and

deserialized there (5). On deserializing the object, the serializer also stores a profile (6)

Figure 5.13: Implementing object reference identity by using reference stores

Interaction Standard

129

in the remote profile store and registers the object in the remote reference store (7)

before the received object can be used on the remote environment (8).

Let's assume that during execution of the received message on the remote environment

the data of the serialized object changes from A to B (9). When a reply message is sent

back (10), the serializer compares the values of all objects in the profile store with the

values of the corresponding objects in the reference store. If any profile value differs

from its object's value, the serializer updates the profile (11) and includes the new

values in the reply message (12). When the original environment receives the message

(13), it updates all modified objects as well as their profiles (14), before it continues

executing in the runtime thread (15).

Incremental Data Transmission

In order to be able to synchronize modifications on serialized objects, every

environment stores a profile for the object. The profile always stores the state of the

object as it currently is on the remote environment. Thus, when a message is sent to a

remote environment, the serializer can check if any object has been modified.

Furthermore, if an object is transferred a second time, only the object id and any

modifications need to be transferred, but not the whole object. This reduces the

communication overhead for serialized objects.

Figure 5.14: Achieving object data synchronization by the use of a profile store

The Extended Plux Component Model for the Web

130

Figure 5.15 shows an example. When the Server sends an object with the value B to the

Client (1), it finds the object in the profile store (2). As the object was not modified on

the Server, the serializer only transfers the object id in the sent message. When the

Client receives the message (4) it again finds the object in its reference store (5) and can

use it without updating the serialized object (6).

Multiple Profile Stores

Profiles store the state of a distributed object as it currently is on the remote

environment. If an environment is connected to multiple environments, each connected

environment can have a different state of a distributed object. Thus, environments need

to maintain an individual profile store per connected environment.

In Figure 5.16 the Web Server is connected to a Client environment and an Application

Server environment. At the beginning a serialized object with the id 1.1 already was

sent to each environment while it had the value A. Thus, each profile store has a profile

with the value A for this object. In (1) the Client has the token and modifies the value of

Figure 5.15: Incremential data transmission by the use of profile stores

Figure 5.16: Maintaining an individual profile store per connected environment

Interaction Standard

131

the object to B. Then the token is passed to the Web Server (2), whereat the Client

serializer compares its profiles with the objects in the reference store, updates the

modified profiles (3), and writes the modifications to the sent message (4).

When the Web Server receives the message (5) it updates the object and also its profile

in the profile store for the Client (6) before the Web Server continues executing the

runtime thread (7). In (8) the token is sent to the Application Server. Now the serializer

compares the objects in the profile store for the Application Server with the objects in the

reference store (9). As the Web Server maintains a special profile store for the Application

Server, it detects that the serialized object on the Application Server is not up to date.

Thus, it serializes the modification into the message (not shown in Figure 5.16 as these

steps are the same as in Figure 5.14).

5.4.8 Object Lifetime Management

Every distributed object lives on multiple environments at the same time, i.e., the

remote environment either has a copy of the original object in the case of a serialized

object, or a proxy object in the case of a remote object. Object copies and proxy objects

are linked to the original object via reference identifiers, which are maintained by the

reference store (see Section 5.4.6 Object Reference Identity). Furthermore, the data of

serialized objects is synchronized by the use of profiles, which are maintained by the

profile store (see Section 5.4.7 Object Data Synchronization). A distributed garbage

collection mechanism manages the lifetime of distributed objects and removes entries

in the reference store and profiles in the profile store if they are not required anymore.

As distributed garbage collection works differently for serialized objects and for

remote objects, its description is separated in two subsections for serialized objects and

for remote objects.

Garbage Collection for Serialized Objects

For a serialized object, the entries in the reference store and in the profile store need to

be kept on an environment, as long as the object lives on this environment. If a

serialized object dies on an environment, the environment can remove its entries in the

reference store and in the profile store. As soon as the object lives only on one

environment, it is not distributed anymore. Thus, this environment can remove the

entries in the reference store and in the profile store for this object, too. In order to let

the environment know whether an object is distributed or not, the reference store

counts the number remote environments in which an object is currently living.

Entries in the reference store have a reference to a distributed object. In order to allow

an object to be destroyed on an environment, the strong reference needs to be changed

into a weak reference when the token is passed to another environment. When an

environment receives the token, weak references are changed into strong references

again. As an environment without the token is considered idle, the local garbage

collector is started after each token pass, by which unreferenced objects get collected.

The Extended Plux Component Model for the Web

132

Figure 5.17 shows an example for the distributed garbage collection mechanism. In the

example a serialized object is sent from the Server environment to the Client

environment. Before the serialized object is sent to the Client (1), the Server creates a

profile in the profile store (2) and an entry in the reference store (3). As the object is

currently living only on the Server, the environment counter is initially set to 1. Similar

to the data of serialized objects, this counter also needs to be synchronized with remote

Figure 5.17: Distributed garbage collection for serialized objects

Interaction Standard

133

environments. Thus, the counter is stored in the profile for this object, too. Next, the

serializer writes the counter and the data of the object to the message to be sent (4).

After the message was sent, all references to serialized objects in the reference store are

changed into weak references (5) and the local garbage collector gets started. If a

serialized object is not referenced by any object on the Server anymore, the serialized

object gets destroyed (6).

In the meantime the sent message is received on the Client (7). The serializer on the

Client creates an entry for the received object in the profile store (8) and in the reference

store (9). As the object was not already registered at the reference store, the counter for

the number of remote environments is incremented to 2 in the entry of the reference

store. The counter in the profile holds the value that is currently known on the remote

environment. Now the object can be used on the Client (10).

When the token is passed back to the Server (11), the serializer on the Client compares

all profiles with the entries in the reference store to detect their modifications (12). As

the serialized object was not modified but only the counter for remote environments

was incremented, the serializer increments also the counter in the profile store (13) and

writes the new number of remote environments to the message to be sent (14). After

the message was sent, all references to serialized object are changed to weak references

on the Client (15).

On receiving the message on the Server (16), the Server changes all weak references to

serialized objects back to strong references (17) so that no serialized object can be

garbage collected while the environment has the token. This is necessary because if a

distributed object would be modified and afterwards garbage collected before the

token is sent to another environment, the modification could not be detected on the

next token pass. Next, the environment counter of the serialized object gets updated in

the profile store to 2 (18). When the serializer updates the environment counter in the

reference store, it detects that the object was already destroyed on the Server. Thus, it

decrements the environment counter to 1, i.e., it remains the same value as it was

before. Furthermore, since the object does not exist anymore on the Server, the

serializer removes the entry from the reference store (19). However, the profile for the

serialized object still has a reference to the entry, which is required when the token is

passed to the Client the next time. In (20) execution continues on the Server.

When the token is passed to the Client in (21), the serializer compares all entries in the

profile store with the entries in the reference store (22) and detects that the object was

already destroyed. Thus, it writes this information and the updated environment

counter to the message (23) and removes the entry for this object in the profile store

too (24). This causes that the profile store entry and the reference store entry are

destroyed (25). After sending the message, the Server again changes all strong

references in the reference store to weak references (not shown).

Finally, the Client receives the message (26) with the token and changes its weak

references in the reference store into strong references (27). On deserializing the

The Extended Plux Component Model for the Web

134

message, the serializer detects the destroyed object and removes its profile form the

profile store (28), which causes the entry to be destroyed. Next, the serializer updates

the environment counter for the object in the reference store (29). As the number of

remote environments is 1 now, the object is not distributed anymore and only lives on

the Client environment. Thus, the serializer also removes the entry for the object in the

reference store (30) and continues execution in the runtime thread (31). As the object is

no longer referenced by the reference store, the local garbage collector can destroy the

object as soon as it is not used on the Client anymore.

Garbage Collections for Remote Objects

The distributed garbage collection mechanism for remote objects differs from the

distributed garbage collection mechanism for serialized objects. Remote objects are not

copied to other environments, but instead, proxy objects are generated on the remote

environments. In order to be able to forward method calls to the original object, Plux

must ensure that the original object is not destroyed until all proxy objects are

destroyed. The original object as well as all proxy objects are registered in the reference

store in order to link them together. However, in order to ensure that original objects

are not destroyed prematurely, the reference to the original object in the reference store

is never changed into a weak reference. Conversely, as proxy objects cannot be

modified and need not be synchronized with the original object, references to proxy

objects in the reference store are always weak references. Therefore proxy objects can

also be destroyed on an environment that has the token. The original object can be

destroyed as soon as all proxy objects have been destroyed. Thus, the entries in the

reference store for remote objects have a proxy counter. When the proxy counter is set

to 0, the object is removed from the reference store and can be collected by the local

garbage collector.

Figure 5.18 shows an example for the distributed garbage collection of a remote object

that lives on the Server environment and is accessed by a proxy object on the Client

environment. When the token is passed from the Server to the Client (1), the Server

keeps a strong reference to the original object in the reference store and sets the initial

value 0 to the proxy counter (2). The profile store on the Server also has an entry for the

remote object (3). However, as proxies cannot be modified on a remote environment,

the profile only stores the object's proxy counter, as it is known on the remote

environment, but not the object's values. On transferring a remote object, the serializer

compares its proxy counter in the profile store with the proxy counter in the reference

store (4) and sends the counter only if it was incremented or decremented (5).

When the Client receives the message with the token (6), it creates a proxy object, adds

an entry in the profile store as well as an entry with a weak reference to the proxy in

the reference store, and increments the proxy counter to 1 (7). Now the Client continues

executing in the runtime thread (8). In (9) the proxy object will be destroyed

immediately by the local garbage collector as soon as it is not used anymore.

Interaction Standard

135

When the token is sent back to the Server (10), the Client detects that the proxy object

has been destroyed (11). Thus, it decrements the proxy counter for this object in the

reference store (12) and notifies the Server that the object with the id 1.1 was destroyed

on the Client (13). Since the proxy counter in the reference store now is equal to the

proxy counter in the profile store, there is no need to send it with the message. Finally,

the Client removes the entries for the destroyed object in the reference store (14) and in

the profile store (15).

When the Server, which holds the original object, receives the message with the

destroyed object (16), it removes the profile for this object from the profile store (17).

Furthermore, as the proxy counter still is set to 0, the Server and removes the entry in

the reference store (18) too, before it continues executing the received message (19).

Now the original object can be destroyed as soon as it is no longer used on the Server.

Figure 5.18: Distributed garbage collection for remote objects

The Extended Plux Component Model for the Web

136

5.4.9 Interoperability

In order to avoid that Plux is limited to a certain technology, the specifications in the

interaction standard are not based on technology-dependent communication

standards, such as .NET Remoting or .NET binary serialization. Plux uses a text-based

transmission format for distributed communication (see Section 5.4.5 Object

Transmission Format). Custom formatters (see Section 5.4.4 Object Transmission

Mode) enable the interoperability between different technologies. For example, with

custom formatters, .NET type information or .NET collection objects can be translated

into adequate Java type information or Java collection objects. However, the object data

synchronization specification (see Section 5.4.7) requires support for reflection, and the

object lifetime management specification (see Section 5.4.8) requires a technology with

local garbage collection support.

5.5 Customization Standard

The customization standard specifies a settings model for extensions allowing users

and administrators to configure their extensions (see Section 3.5 Customization

Standard). As this settings model is the same for web applications, the extended

component model for the web does not include any further specifications for the

customization standard. However, the current implementation of the customization

standard requires that the settings for extensions must be deployed to the same

environment as the extensions.

Chapter 6

137

6 Component Model Implementation

This chapter describes the Plux composition infrastructure, which implements

the Plux component model. The composition infrastructure is assembled from

several runtime modules, which are exchangeable and can be extended with

optional runtime add-ons. The Plux composition infrastructure for the server is

hosted and accessed with ASP.NET web pages, the composition infrastructure

for the client is provided by browser plugins for different browsers, by a client-

side standalone implementation, and by a Silverlight implementation, which is

deployed on the server.

The Plux composition infrastructure, which implements the specifications of the Plux

component model, allows executing distributed multi-user web applications built from

Plux components. The following sections describe the ingredients of the composition

infrastructure and its architecture.

6.1 Composition Infrastructure

The composition infrastructure of Plux, which implements the Plux component model,

consists of the Server Runtime and several Client Runtimes, each having its own

Discoverer implementation (see Figure 6.1 on the next page). The Server Runtime enables

the execution of component-based web applications that are built from Plux

extensions. It hosts an individual Runtime Node per user, which assembles and

maintains the composition for one user. Furthermore, each Runtime Node can be

connected to remote Runtime Nodes. Every connected set of Runtime Nodes constitutes a

coherent composition infrastructure, which assembles and maintains a single

composition state for a distributed web application. Remote Runtime Nodes are hosted

by Client Runtimes, which can be implemented as web browser plugins, as Silverlight

applications, or as standalone applications. A Runtime Node is connected to the Server

Runtime when the web browser requests a Plux web application, when a sandbox

plugin is composed for the first time, or when the standalone Client Runtime is started

(see Section 5.4.2 Connection Establishment on page 117). The Server Runtime's

Connection Listener allows Client Runtimes to connect their Runtime Node to the

Runtime Node on the server. Client Runtimes may also have a Connection Listener in

Component Model Implementation

138

order to connect themselves to each other. The User Store maintains the hierarchy of

users and user groups. It is used by the Multi-user Discoverer, which assigns server-side

plugins and sandbox plugins to the respective Runtime Nodes. The client-side Discoverer

discovers client-side plugins and adds them to the composition infrastructure via the

Runtime Node of the Client Runtime. The server-side discoverer and the client-side

discoverers are not part of the Plux runtime, but are implemented as exchangeable

extensions (see Section 3.2 Deployment Standard on page 43).

Runtime Architecture

Every runtime node consists of several runtime modules, each of which implementing

a specific part of the component model. As all runtime modules are exchangeable, the

component model implementation is adaptable and can be extended with optional

runtime modules (see Section 6.2 below). How runtime modules can be exchanged is

described in Appendix A.2: Runtime Configuration. Figure 6.2 shows the runtime

modules that constitute a runtime node. The core modules implement the base

composition model for component-based desktop applications and can be used

independently from the web modules. The web modules implement the extended

component model for the web and enable support for component distribution.

The external Discoverer discovers new plugins and contracts in a background thread

and uses the Dispatcher (1) to add them to the Type Store (2) in the runtime thread. The

Type Store allows storing and retrieving type information for extensions and triggers

the Composer to compose new extensions (3) when new plugins were added. The

Composer queries the current composition state in the Instance Store (4) to find matching

slots for the plugs of new extensions. The Instance Store maintains the composition state

of an application and stores all instances of extensions and their connections. If the

Composer finds a matching slot for a new extension, it instructs the Qualifier to check

Figure 6.1: Plux composition infrastructure

Composition Infrastructure

139

whether the extension with the matching plug implements the required interfaces and

whether it provides the required parameters (5). For this, the Qualifier retrieves the slot

definition for the matching slot from the Type Store (6) and compares the slot

definition's requirements with the extension's provisions. If the extension is qualified to

be composed, the Composer plugs the matching plug into the slot and updates the

composition state in the Instance Store (7). The Composer uses the Notifier (8) to raise

appropriate composition events during composition operations. The Notifier maintains

all registered event handlers, regardless of if they were registered by the extensions'

meta-objects or by composition behaviors. If some code accesses the extension object of

an extension, e.g., in an event handler of a Plugged event, the Composer starts a new

composition sequence for the extension and instantiates its extension object by the use

of the Activator (9). The Activator uses the Loader to load the assembly that implements

the extension (10), if it was not already loaded. The Loader retrieves the location of the

assembly via an assembly Uri that is stored in the extension's meta-object, and possibly

downloads the assembly from a different computer before it is loaded. For example,

the Loader of the Silverlight runtime needs to download assemblies from the server

before it can load them on the client-side Silverlight environment. After activating the

extension, the Composer opens the extension's slots and again uses the Type Store (11) to

find contributors for the extension's slots. It composes them by repeating steps (4) to

(11) recursively, until all slots have been filled with matching extensions.

If the Composer needs to start a composition sequence for a remote extension, it

forwards the composition operation to the remote environment via the Runtime

Coordinator (12). The Runtime Coordinator serializes the message with the Serializer (13).

Figure 6.2: Plux runtime modules

Component Model Implementation

140

The Serializer uses the Reference Store to register distributed objects and to get a unique

object id for them (14). Furthermore, the Serializer uses the Profile Store to create and

update profiles for serialized objects (15) in order to implement object data

synchronization. The Profile Store uses the Reference Store to link profiles to their

original object (16). Finally, the Runtime Coordinator uses a Channel (17) to send a

message to the remote environment.

When the Runtime Coordinator receives a message via a Channel (18), it uses the

Serializer (19) to deserialize the message. The Serializer uses the Reference Store (20) to

query received object ids and to reuse existing objects that were already registered. If

an object was not yet registered in the Reference Store, the Serializer creates a new

instance of the distributed object and registers it in the Reference Store. For instantiating

proxy objects, the Serializer uses the ProxyFactory (21), which dynamically generates

proxy types from interface descriptions and uses them to instantiate proxy objects. On

deserializing a message, the Serializer uses the Profile Store (22) to update profiles and

objects that were modified on the remote environment, or to create new profiles if they

do not already exist. The Profile Store links profiles to their object in the Reference Store

(23). As soon as the message is deserialized, the Runtime Coordinator uses the Dispatcher

(24), if the message needs to be executed in the runtime thread. If the received message

is a composition operation to be performed, the Runtime Coordinator forwards the

operation to the Composer (25). Finally, the Dispatcher forwards dispatcher operations to

remote environments using the Runtime Coordinator (26), if they need to be enqueued

by the Dispatcher there.

All runtime modules and all extensions can use the Logger (27), e.g., to log an

upcoming task or to log that a task is finished. The logger interface provides different

verbosity levels for log messages: Quiet, Minimal, Normal, Detailed, and Diagnostic. The

sender of a log message can choose the verbosity level for each log message. Whether

the message gets logged depends on the verbosity level that is set at the runtime

configuration. Extensions access the Logger via their meta-objects.

6.2 Runtime Add-ons

Runtime add-ons are optional runtime modules that can be installed to extend the Plux

runtime. The mandatory runtime modules provide hooks to which runtime add-ons

can listen and by which they can influence their behavior. This section describes the

optional runtime modules Security Add-on, Testing Add-on, and Debugging Add-on,

which are provided by the composition infrastructure.

Security Add-on

By default, the Plux composition infrastructure allows adding any plugin to the type

store. When composing an application, it connects all matching slots and plugs, and it

gives all extensions full permissions. The Security Add-on can be installed on the

runtime in order to refuse unauthorized plugins, to block illegal composition

Runtime Add-ons

141

operations, to isolate untrusted plugins in sandboxes, and to wire interceptors between

extensions. In order to do so, the Type Store asks the Security Add-on if it is allowed to

add a plugin; the Composer asks the Security Add-on if it is allowed to connect two

extensions; if the connection is allowed, the Security Add-on may nevertheless wire an

interceptor between the extensions in order to restrict the interface of an extension; and

the Security Add-on may restrict the permission set of an extension when it is created

(e.g., by denying access to the hard disc or to the network). Finally, the Security Add-on

can also enforce restrictions on disconnecting and removing extensions.

The Security Add-on obtains security settings either from a configuration file or from

attributes that can be attached to extensions, slots and plug, which allows

manufacturers to specify restrictions directly in the source code of the extensions.

Custom security scenarios, which are not covered by the configuration file or by

attributes, can be covered by implementing security libraries. The Security Add-on is

described in detail in [Wolfinger et al., 2012].

Testing Add-on

Plux allows dynamic reconfiguration of applications by dynamically adding or

removing components. To test whether a component is dynamically composable, it is

not sufficient to test it in isolation, but one also has to test it in combination with other

components and with dynamic reconfiguration. The Testing Add-on allows systematic

composability tests by permutating all possible ways in which components can be

connected. It reads test specifications from a configuration file, prepares factories to

create testbed components, adds testbed components to the type store, uses the

composer to execute composition operations, and executes tests on different

composition states. [Löberbauer, 2012; Löberbauer et al., 2010]

Debugging Add-on

The Debugging Add-on records the composition process of a program, analyzes the

composition sequences and composition states, and hints at possible causes of

composition errors (e.g., when necessary extensions are missing or when extensions

where plugged in the wrong order). Composition errors can be located with a post

mortem composition debugger, i.e., by replaying the composition operations and

searching for the causes of composition errors.

An additional debugging tool allows developers to evaluate the composition trace, to

filter composition operations, to split composition traces into parts that contain related

composition operations, to compare composition traces and to visualize differences

between them. This tool generates hints for possible error causes using reasoning.

[Löberbauer, 2012; Lengauer, 2012]

Component Model Implementation

142

6.3 Runtime Libraries

Runtime libraries support developers with prefabricated implementations for common

tasks in developing component-based web applications. This section describes the

Administration Library, which provides support for user management and plugin

deployment, the Web UI Library, which enables developers to build user interfaces from

distributed components, and the Layout Library, which supports the developer by

arranging controls of component-based user interfaces.

Administration Library

The Administration Library consists of a set of assemblies that support the

administration of user accounts and the deployment of user-specific plugins. It

contains different user store implementations that can be used by the server runtime:

the XML user store maintains user information in an XML file; the database user store

can be used to store user information in a database; and the ASP.NET user store

implements the ASP.NET membership API, which can be used to store users in files or

in a database, and which can be used for authentication in ASP.NET web applications.

Furthermore, the Administration Library provides support for deploying plugins to the

server-side plugin repository. It allows installing server-side plugins by administrators,

who have access to the server environment, and by users, who can install server-side

plugins from remote environments.

Web UI Library

The Web UI Library allows developers to build distributed user interfaces for web

applications from web controls such as Buttons, Labels, or Panels. The user interface for

Plux web applications can also be built from ASP.NET web controls, however

ASP.NET web controls require to be executed in the AppDomain in which an ASP.NET

web application was started. Therefore, with ASP.NET controls it is neither possible to

separate user-specific plugins that implement parts of the user interface in different

AppDomains, nor is it possible to extend the user interface with distributed

components. Therefore, the Web UI Library provides an implementation of web

controls, which are similar to the ASP.NET web controls, but can be executed in

different AppDomains and can be used in the same way in local components as well as

in components that are executed on a remote environment.

Layout Library

In component-based web applications, which have the goal to be adaptable and

extensible, the user interface should be adaptable and extensible, too. Therefore, the

user interface also needs to be built from separate components. However, building

user interfaces from separate components, which do not know each other, leads to

additional problems that need to be solved. In common user interfaces, developers

arrange user controls either by specifying absolute values for the size and position of a

control, or by specifying those values relative to other controls, which are known by

Runtime Libraries

143

the developer. As user controls in component-based user interfaces do not know the

other controls in the current composition, it is not possible to arrange controls with

static values for their size and position. The Layout Library implements a solution for

dynamically arranging user controls in component-based user interfaces. For this, UI

components specify layout information declaratively in their metadata via .NET

attributes. The layout information comprises generic specifications for the size and the

location of every control. This is evaluated by the Layout Library to arrange all existing

controls in a coherent user interface.

Chapter 7

145

7 Evaluation

This chapter evaluates our approach of building plugin-based distributed multi-

user web applications with Plux. For our evaluation, we adapted two existing

plugin-based desktop applications so that they can be deployed as web

applications. In this process, we analyzed the degree of component

prefabrication and component reusability.

The purpose of component-based software development is to build applications from

loosely coupled components with well-defined interfaces, which can be implemented

independently. The goal of this approach is to prefabricate and to reuse components in

different applications. Furthermore, plugin components enable applications to be

customizable and extensible with third-party plugins provided by end users.

The following sections evaluate the degree of component prefabrication and

component reusability of plugin-based distributed multi-user web applications with

regard to the component model for the web, which was presented in this thesis. For

this, we analyzed two case study applications, which originally were implemented

using the original Plux component model that was introduced in the PhD thesis of

Wolfinger [Wolfinger, 2010]. Since this component model targets single user desktop

applications only, both case study applications initially were desktop applications.

One of our research goals was to increase component reusability when building web

applications from existing desktop applications. Therefore, for evaluation purposes we

adapted both case study applications so that they can be used as web applications as

well. In doing so, we determined the number of components that could be reused for

the web without any modification, the number of generic web components that were

already prefabricated, and the number of components that needed to be re-

implemented for the web.

A further goal was to increase customizability and extensibility for component-based

web applications. By supporting distributed components, we enabled users to

customize the architecture of their applications according to their needs. Applications

now can be deployed as pure web applications, where the whole application is

deployed and executed on a web server; they can be deployed as rich web applications,

where all components are installed on a web server, but the components for the user

Evaluation

146

interface are transferred to the client computer and executed there when the

application is accessed, while the components for the business logic stay on the web

server; they can be deployed as thin client applications, where only the business logic

components are installed and executed on a server whereas components for the user

interface are installed and executed on the client computer; or they can be deployed as

pure desktop applications, where all components are installed and executed on the

client computer. Furthermore, the extensibility of web applications was increased,

since users now can extend them with their individual user-specific components either

on the server-side or on the client-side. However, it is difficult to determine the degree

of how much the extensibility of the applications was increased, because existing

component models do not support user-specific extensions for web applications at all.

Section 7.1 describes the extensions and the composition architecture of the case study

applications that were used for evaluation and Section 7.2 presents the degree of

component prefabrication and reusability that could be achieved when adapting both

case studies to deploy them as pure web applications, as rich web applications, and as

thin client applications.

7.1 Case Studies

For evaluation purposes, we adapted two existing plugin-based desktop applications

in order to deploy them as web applications. The first case study is the Time Recorder

application for recording working hours, which was already introduced in Chapter 4

to motivate the approach for building plugin-based distributed multi-user web

applications. The second case study is a Cross Compiler with an IDE, which was

originally implemented for a Master's Thesis in the context of the Plux research project

[Jahn, 2009]. The Cross Compiler case study implements a plugin-based compiler that

translates source code from one programming language or markup language into

another language. The input language as well as the output language can be

customized by using different components for parsing the input and generating the

output. Both applications consist of multiple extensions, which can be distributed

across multiple computers and can be extended by end users.

The following subsections describe the composition architecture of the case study

applications. We classify extensions into generic extensions and specific extensions.

Generic extensions can be prefabricated and reused in any application, while specific

extensions are implemented exclusively for a specific application. Additionally, all

extensions are assigned to one of the following application layers. The System layer

consists of extensions that are provided and used by the Plux composition

infrastructure, the Presentation layer consists of extensions that implement the user

interface of the application, Application layer extensions implement the business logic of

an application, and Data layer extensions provide access to the data that is used by an

application. Besides the classification into generic and specific extensions, the application

layer of an extension influences its degree of component reusability as well.

Case Studies

147

7.1.1 Time Recorder

The Time Recorder application provides features for recording and evaluating working

hours. Figure 7.1 shows its user interface, which is composed from multiple user

controls that are implemented as independent extensions. It consists of the menu (1),

the recorder for starting and stopping time records (2), the project recorder for

assigning time records to different projects (3), the notes control for attaching notes to

the current time record (4), the status area for displaying status information for the

current time record (5), and the presence view for displaying time records in a selected

time range (6).

Figure 7.2 on the next page shows the composition architecture for the frontend of the

Time Recorder application. The figure contains the extensions in the Presentation layer,

which implement the user interface shown in Figure 7.1, and it contains the extensions

in the System layer, which implement the exchangeable discovery mechanism. All

extensions in the System layer are generic, while the extensions in the Presentation layer

are separated into generic and specific extensions. The composition architecture for the

backend is shown in Figure 7.3 on page 151. Those extensions are separated into

Application layer extensions, which implement the business logic of the application, and

Figure 7.1: User interface of the Time Recorder application

Evaluation

148

into Data layer extensions, which provide access to the data that is used by the business

logic extensions. Most backend extensions are specific extensions, which are

implemented exclusively for the Time Recorder application, but a single extension in the

Data layer is generic, which can be reused in any application.

System layer (generic)

The System layer consists of the generic extensions Discoverer, Filesystem Detector, and

Assembly Analyzer, which implement the exchangeable discovery mechanism. These

extensions were described in Section 3.2 and can be reused in any application.

Presentation layer (generic)

All generic extensions in the Presentation layer are provided by the Plux composition

infrastructure. The Workbench extension acts as a host for view extensions, which can

be opened within the display area of the workbench. For arranging views, the

Workbench uses a TabContainer extension. Furthermore, the Workbench provides a slot

for a Menu extension, which is displayed on the top of the display area, as well as a slot

Figure 7.2: Frontend composition of the Time Recorder application

Case Studies

149

for Action extensions, which are displayed as entries in the menu. The Visualizer is a

View extension that shows the current composition state of the application and

provides an interface for modifying the current composition state (see Section 3.3.7).

Presentation layer (specific)

The specific extensions in the Presentation layer implement the user interface of the Time

Recorder view (see Figure 7.1), which is plugged into the Workbench. The Time Recorder

extension is the host for control extensions, which provide the user interface for the

various features of the application. The Recorder Control contains buttons for starting,

pausing, and stopping recording; the Status Container provides an area for displaying

status information such as duration and start time of the current time record or the

sum of recorded working hours for the current project; the Project Recorder Control

provides a list of radio buttons that assign the current time record to a particular

project; the Notes Control allows the user to enter a note for the current time record; the

View Container provides a display area within the Time Recorder to show the content of

internal views; the Presence View shows a list of time records for a certain period of

time; the Project View shows time record statistics for a selected project; the Export View

Figure 7.3: Backend composition of Time Recorder application

Evaluation

150

allows users to export time records into a file; and finally the Menu Control provides an

internal menu that shows entries for actions, which can be plugged in its

TimeRecorderAction slot.

Application layer (generic)

The Application layer consists only of a single generic extension, which is the Shutdown

Action. It is plugged into the Workbench and it is used to close the application. Since the

implementation of the extension just invokes the runtime's Shutdown method, but does

not provide a user interface, it belongs to the Application layer.

Application Layer (specific)

Specific extensions in the Application layer are used by specific extensions in the

Presentation layer. The Recorder is used by the Recorder Control to start and stop

recording working hours; the Presence Status is displayed by the Status Container and

uses the Recorder to determine the start time as well as the duration of the current time

record and it uses the Presence Store of the Data layer to sum up all time records of the

current day; the Project Recorder is used by the Project Recorder Control to assign time

records to different projects, it is used by the Notes Control to assign notes to the current

time record for a project, and it is used by the Project Status to display status

information for the current project; the Project Status is displayed by the Status

Container and uses the Project Recorder and the Project Store to sum up the time records

of the current project; the Presence Data View is used by the Presence View and allows

selecting, filtering, and sorting time records to be displayed; the Project Data View is

used by the Project View and works similar to the Presence Data View for project time

records; the Notes Detail Provider is used by the Project View and provides the notes that

are assigned to the selected project time record; and finally the MdbConverter as well as

the CsvConverter are used by the Export View to convert stored data into either a mdb

file or a csv file.

Data layer (specific)

The Data layer contains extensions that allow storing and retrieving data that is used by

the application. The Presence Store provides access to presence time records; the Project

Store provides access to project time records; and the Note Store provides access to notes

for project time records. All the specific stores use the generic store extension Xml Data

Store, which provides an interface for storing and retrieving arbitrary data.

Data layer (generic)

The generic Data layer contains the Xml Data Store extension for writing and reading

data into and from an XML file. Besides the Xml Data Store, there is also an optional

Database Data Store, which stores the data into a connected database (not shown).

Case Studies

151

7.1.2 Cross Compiler with IDE

The Cross Compiler application can be used to translate any programming or markup

language into any other language. It was developed in the context of the Plux research

project in order to translate Delphi source code into C# source code. The component-

based architecture of the compiler allows exchanging all its essential parts so that the

translation of other languages can be supported as well.

Figure 7.4 shows the graphical user interface of the IDE for the cross compiler, which is

again implemented with independent extensions. The Menu (1) shows menu entries for

actions that can be plugged into the extension that implements the menu; the Tool

Bar (2) allows controlling the compiler, shows the location of the source file and the

output file, and allows selecting the parser and the code generator that are used for

compilation; the Source View (3) shows the source code of the input; the AST View (4)

shows the abstract syntax tree that was generated during parsing the source code; the

Symbol Table View (5) shows the contents of the symbol table; the Output View (6) shows

the generated output; and the Error View (7) shows a list of messages, warnings, and

errors, which were logged during compilation.

The composition architecture of the compiler and its IDE are shown in Figure 7.5 on

the next page. Since all generic extensions of the System layer and the Presentation layer

of this application are the same as in the Time Recorder application, they are not shown

in the figure.

Figure 7.4: User interface of the IDE for the Cross Compiler application

Evaluation

152

Presentation layer (specific)

The cross compiler application provides two different user interfaces. The Console

extension is used by the command shell and allows users to control the Compiler via

shell commands. The IDE provides a graphical user interface and is implemented as a

view extension that can be plugged into the Workbench extension (not shown). The IDE

extension has a slot for the Compiler to be controlled. It is extended by several UI

extensions, which are displayed within the IDE view (see Figure 7.4). The Menu shows

menu entries, which can be plugged into its Action slot. The base deployment

configuration of the application contains extensions for the actions New, Open, Save,

Figure 7.5: Composition of Cross Compiler case study

Component Prefabrication and Reusability

153

SaveAs, Exit, Parse, Compile, Generate, Reset, and About (not shown). The Tool Bar allows

selecting the parser extension as well as selecting the generator extension, which are

used by the Compiler in order to change source and output language. Furthermore, it

provides the buttons Parse, which starts the parser, Generate, which starts the code

generator, and Compile, which starts the parser and the code generator. The Source View

displays the contents of the opened source file; the Symbol Table View displays the

contents of the symbol table, which is filled by the compiler during parsing the source;

the AST View displays the abstract syntax tree (AST), which is also built up during

parsing the source; the Output View displays the output that is generated by the

compiler; finally, the Error View displays messages, warnings and errors that occurred

during compilation.

Application layer (specific)

The Application layer consists of extensions that implement the functional part of the

compiler. The Compiler extension combines the ingredients of a compiler that are

necessary for translating source code from one language to another. The ingredients

are implemented as extensions, which are plugged to the Compiler. The Source Buffer

provides the source code to be translated. The Delphi Parser analyses Delphi source

code, fills the Symbol Table, and builds up the Abstract Syntax Tree. The Symbol Table

stores all identifiers of the source code and their meanings. The Abstract Syntax Tree

models the source code in a tree-like data structure. The C# Code Generator uses the

Abstract Syntax Tree and the Symbol Table to generate C# code, which is written into the

Output Buffer. The extensions Compiler, Source Buffer, Delphi Parser, C# Code Generator,

and Output Buffer use the Logger to log messages, warnings and errors, which are

displayed by der Error View. Finally the Selection Manager is used by the Source View,

the Symbol Table View, the AST view, the Output View and the Error View to synchronize

the selection in those views. This allows the user to select source code in the Source

View, to see the generated output for the selection in the Output View, and to see the

internal data of the compiler for the selection in the Symbol Table View and in the AST

View.

Data layer (specific)

The Data layer of our cross compiler consists only of the extension Preferences, which

stores compiler configurations such as the location of symbol libraries for the symbol

table.

7.2 Component Prefabrication and Reusability

This section evaluates the degree of component prefabrication and reusability that was

achieved by adapting our case studies from desktop applications to web applications.

Whether an extension can be prefabricated or reused both in desktop and in web

applications depends on whether it is generic or specific and to which application layer

Evaluation

154

it belongs. Thus, the following subsections determine the degree of component

prefabrication and reusability based on the total number of extensions in the different

application layers for generic and specific extensions.

Figure 7.6 shows the number of generic and specific extensions in each application

layer as absolute values and as percentage of the total number of extensions per

application for both case studies.

For our evaluation, we did not only consider the case of building pure web

applications, where all extensions are executed on a web server, but we also analyzed

combinations of desktop and web applications, where the extensions in the application

layer and in the data layer are executed on the server, but the extensions in the

presentation layer are executed on the client-side computers. For architectures that

combine server-side and client-side extensions, we distinguish between thin client

applications and rich web applications. In thin client applications, the extensions in the

presentation layer are deployed and executed on the client side, while in rich web

applications those extensions are deployed on the server, but transferred to the client

on demand and are executed in a sandbox there. For rich web applications, we used

the Silverlight technology for implementing user interface extensions.

7.2.1 Prefabrication

When building web applications from existing desktop applications, some extensions

cannot be reused as they are. For example, the discovery mechanism is implemented

differently for single-user desktop applications and for multi-user web applications.

Thus, the discovery extensions that are used by desktop applications need to be

replaced by discovery extensions for the web. Similarly, extensions in the presentation

layer are implemented differently for desktop and for web applications and need to be

replaced as well. However, if those extensions are generic, they need not be re-

implemented by the developer, but can be prefabricated and provided by the

composition infrastructure. Thus, the degree of component prefabrication influences

the degree of component reusability. The more components are already prefabricated,

the higher is the degree of component reusability.

Figure 7.6: Number and percentage of generic and

specific extensions per application layer

Component Prefabrication and Reusability

155

Figure 7.7 shows the number of prefabricated extensions and their percentage of the

total number of extensions of our case study applications. Since all generic extensions

could be prefabricated, 9 of 31 extensions were prefabricated for the Time Recorder

application and 8 of 37 extensions were prefabricated for the Cross Compiler

application. As a result, the average degree of component prefabrication was 25%,

while 75% of all extensions had to be implemented exclusively for those applications.

Furthermore, the figure shows that the number of prefabricated extensions in the

system layer and in the presentation layer is significant higher as for the prefabricated

extensions in the application layer and in the data layer.

7.2.2 Reusability

Whether an extension can be reused both in desktop applications and in web

applications depends on the environment in which an extension should be used

(i.e., Server, Client, or Sandbox) and on the application layer to which an extension

belongs. In other words, the architecture of an application influences the degree of

component reusability. Thus, the degree of component reusability differs depending

on whether a desktop application is adapted to a pure web application, to a thin client

application, or to a rich web application. In addition to that, the amount of extensions

in the various application layers also influences the degree of component reusability.

Figure 7.8 on the next page shows which extensions can be reused or need to be

replaced in a certain environment depending on its application layer. The figure

distinguishes between the environments Server, Client, and Sandbox. Server means that

an extension is deployed and executed on the server; Client means that an extension is

deployed and executed on the client; and Sandbox means that the extension is

implemented as a Silverlight extension, which is deployed on the server, but executed

in a sandbox on the client. Furthermore, the figure distinguishes between reusing,

replacing, and potentially replacing an extension. Reusing means that an extension can be

reused in a particular environment as it is; replacing means that the extension needs to

be replaced either with a prefabricated extension, or with an extension that just needs

to be re-compiled for this environment; and potentially replacing means that an

extension may just needs to be recompiled for a particular environment depending on

its implementation. Extensions that can be neither reused nor replaced must be re-

Figure 7.7: Number and percentage of prefabricated

extensions per application layer

Evaluation

156

implemented for using them in the particular environment. Since the reusability of

extensions was only dependent on the extension's deployment environment, its

application layer, and whether it was generic or specific, the figure does not

distinguish between both case studies and it does not distinguish between extensions

in the same application layer for generic or for specific extensions.

In our case study the extensions in the system layer implement the discovery

mechanism. Since the discovery mechanism is implemented differently in every

environment, those extensions either need to be replaced by generic prefabricated

discovery extensions for the respective environment, or those extensions need to be re-

implemented for the respective environment if they are specific and implemented for a

certain application. Since all discovery extensions in our case studies are generic

extensions, they were provided by the composition infrastructure and it was not

necessary to re-implement them. For the extensions in all other application layers, it

depends on the deployment environment, whether they can be reused, whether they

just need to be replaced, or whether they need to be re-implemented.

If extensions should be executed on the Server, they can be reused, if they belong to the

application layer or to the data layer. Extensions in the presentation layer cannot be

reused, because user interfaces for web applications are implemented differently than

user interfaces for desktop applications. However, since generic extensions in the

presentation layer are provided by the composition infrastructure, they just need to be

replaced, while specific extensions in the presentation layer need to be re-implemented

for using them in web applications.

If extensions should be used on the Client, they can be reused without modification in

all application layers, except in the system layer. As mentioned above, system layer

extensions need to be replaced or re-implemented. Even though the extensions in the

presentation layer could be reused without modification, they were slightly adapted

for performance reasons in our case studies. In the original implementation, the user

interface was executed in the Plux runtime thread. Since this thread is used for

distributed communication, communication delays would possibly have led to bad

responsiveness of the user interface. Thus, we adapted those extensions so that the user

Figure 7.8: Reusability of generic and specific extensions depending on

their deployment environment and their application layer

Component Prefabrication and Reusability

157

interface thread is now different from the runtime thread. However, after the adaption,

these extensions can now be reused for desktop applications and for thin client

applications without any further adaption.

Since Sandbox extensions are implemented with the Silverlight technology and

Silverlight assemblies are not binary compatible to .NET assemblies, they cannot be

reused as they are. However, generic extensions can be replaced with extensions

provided by the composition infrastructure, and extensions in the application layer just

need to be re-compiled and replaced, but not re-implemented. For extensions in the

presentation layer it depends on the library that was used for implementing the user

interface. If the user interface for a desktop application only used library elements that

also exist in Silverlight, the extensions just need to be re-compiled, otherwise they need

to be re-implemented. In our case studies, the user interface of the Time Recorder

application was implemented with the intention to deploy it as a rich web application

as well. Since it used only library elements that also exist in Silverlight, it was enough

to re-compile and replace the user interface. However, the Cross Compiler was built

with library elements that do not exist in Silverlight and thus they had to be re-

implemented. Extensions in the data layer possibly need to be re-compiled as well, if

they do not use local resources such as the local file system. In the case studies, the data

layer extensions Xml Data Store as well as Preferences are using local resources and thus

could not be replaced with re-compiled extensions. However, since it does not make

sense to execute those data layer extensions in the Sandbox environment they were not

re-implemented.

The following subsections show the degree of component reusability, which was

achieved when adapting the case studies to pure web applications, to thin client

applications and to rich web applications.

Pure Web Applications

In a pure web application every extension is executed on the web server and the

application is accessed via a browser frontend. Thus, there are only Server extensions,

but no Client and no Sandbox extensions. Figure 7.9 on the next page shows the degree

of component reusability that could be achieved when adapting the desktop

applications of our case studies to pure web applications.

The Time Recorder application consists of 31 extensions in total. We could reuse 14

extensions without modification, we replaced 3 generic extensions in the system layer

and 4 in the presentation layer, and we had to re-implement 10 specific extensions in

the presentation layer.

The Cross Compiler application consists of 37 extensions in total. We could reuse 21

extensions without modification, we replaced 3 generic extensions in the system layer

and 4 in the presentation layer, and we had to re-implement 9 specific extensions in the

presentation layer.

Evaluation

158

As a result, 51% of all extensions could be reused, 21% could simply be replaced, and

28% needed to be re-implemented for the web. We consider it as a proof for the power

and the location transparency of our plugin platform that only one third of the

components had to be re-implemented when desktop applications were ported to the

web.

Thin Client Applications

In thin client applications, the extensions that implement the user interface are

deployed and executed on the Client, while the extensions that implement the business

logic are deployed and executed on the Server. Figure 7.10 shows the degree of

component reusability that could be achieved when adapting the desktop applications

of our case studies to thin client applications.

When adapting the Time Recorder desktop application to a thin client application we

could reuse 14 extensions in the application and the data layer on the server as well as

14 extensions in the presentation layer on the client. Only the 3 discovery extensions in

Figure 7.10: Component reusability for building Thin Client Applications

Figure 7.9: Component reusability for building pure Web Applications

Component Prefabrication and Reusability

159

the system layer needed to be replaced with the respective extensions for server-side

and client-side discovery.

When adapting the Cross Compiler application we could reuse 21 extensions in the

application layer and data layer on the server as well as 13 extensions in the

presentation layer on the client. Similar to the Time Recorder application, only the 3

discovery extensions had to be replaced.

As a result, we could reuse 91% of all extensions and could replace 9% with other

prefabricated extensions. Not a single component had to be re-implemented.

Rich Web Applications

In rich web applications, the extensions that implement the user interface are deployed

on the Server, but are executed on the Client. The extensions that implement the

business logic are deployed and executed on the Server. Figure 7.11 shows the degree

of component reusability that could be achieved when adapting the desktop

applications of our case studies to rich web applications.

When adapting the Time Recorder desktop application to a rich web application, the

reusability of business logic extensions on the server is the same as for both other

architectures. Since the implementation of the user interface is done with Silverlight,

extensions in the presentation layer cannot be reused. However, it was also not

necessary to re-implement them, because they were implemented in such a way that

they just had to be re-compiled for the Silverlight technology.

When adapting the Cross Compiler, all extensions in the application layer and the data

layer could be reused. The discovery extensions in the system layer and the generic

extensions in the presentation layer had to be replaced, but the specific extensions in

the presentation layer had to be re-implemented, because they originally were

implemented using the Windows Forms technology, which cannot be re-compiled for

Silverlight.

Figure 7.11: Component reusability for building Rich Web Applications

Evaluation

160

In total, 51% of all extensions could be reused, 35% had to be replaced and only 13%

had to be re-implemented. Again, this seems to be a strong demonstration of the power

and location transparency of our plugin platform.

Chapter 8

161

8 Summary

This chapter summarizes the contributions of this thesis, which consist of

refinements of the original Plux component model and of contributions that

enable distribution support, multi-user support, and web support. Furthermore,

it points at some open issues that could not be resolved yet, and suggests a set of

topics for further research in order to improve the concepts of the presented

component model.

This thesis presents a component model for building plugin-based web applications

and a component infrastructure that implements the component model. In contrast to

existing solutions, the presented component model allows users to customize and

extend their web applications with user-specific extensions. Furthermore, the

component model supports distribution of components across multiple computers,

which enables users to extend their web applications with client-side components that

have access to local resources, such as local hardware, if required. The following

sections conclude the thesis by summarizing research contributions, by pointing to

open issues to be resolved, and by suggesting further research.

8.1 Contributions

The thesis claims research contributions for assembling web applications from plugins,

so that every user can have his individual set of components and that components can

reside on different computers. The thesis is based on the Plux component model of

Wolfinger, which was described in his PhD thesis [Wolfinger, 2010]. However, it goes

far beyond Wolfinger's thesis by introducing a number of refinements to the original

component model and by extending it with new concepts that enable distribution

support, multi-user support, and web support. The following subsections summarize

these contributions.

Component Model Refinements

We introduced some refinements to the original Plux component model, which

simplify extension development and lead to less coding effort as well as to less coding

complexity:

Summary

162

 New Meta-object Model. The metadata for extensions can be retrieved via meta-

objects (e.g., Extension, Plug, and Slot). Our new component model defines a

completely redesigned meta-object model, which simplifies the composition

API. The most significant modification is that in the original composition API

developers had to distinguish between type meta-objects and instance meta-

objects. In the new component model, developers only deal with instance meta-

objects, while type meta-objects are used only internally by the composition

infrastructure.

 Synchronous Composition Process. Our new component model defines a

completely redesigned composition process. The original composition process

was executing composition operations asynchronously, i.e., all composition

operation were enqueued by the composer and extensions had to wait for

callbacks to continue work after the operation was performed. The current

composition process performs composition operations synchronously, i.e.,

when calls to composition operations return, one can be sure that they have

already been executed. For this, the composition model introduced nested

composition sequences. The synchronous composition process simplifies

programmatic composition and leads to a more comprehensible

implementations of extensions.

 Lazy Composition / Automatic Garbage Collection. Our new composition process

activates extensions not until they are accessed for the first time. Since

extensions only get composed as soon as they are activated, the composition

process only composes extensions that are in use. Furthermore, the component

model includes an automatic garbage collection mechanism, which destroys

extensions, as soon as they are not used anymore. The combination of lazy com-

position and automatic garbage collection keeps the composition state minimal.

 Enriched Composition State. Our new component model allows tagging

connections between extensions with an arbitrary number of named labels. In

this way, the composition state can be enriched with additional information,

e.g., by marking a contributor that is currently performing a certain task.

 Additional Composition Events. Our component model defines new composition

events that notify extensions about upcoming composition operations and

allow them to cancel them if required, e.g., if some precondition is not fulfilled.

 Composition Behaviors. Our new component model defines reusable composition

behaviors, which implement common composition logic patterns and can be

applied to extensions declaratively. Composition behaviors increase code reuse,

because programmatic composition is extracted into reusable composition

libraries that can be applied to different extensions.

Open Issues

163

 Component Customization. Our new component model defines a customization

model for extensions by which extensions can be enriched with configurable

settings. Settings for extensions can be retrieved via their meta-objects.

Component Model Extensions

The most important contributions of this thesis are the following novel concepts, which

extend the original component model in order to support building plugin-based

distributed multi-user web applications:

 Distribution support. Our extended component model defines a distributed

discovery mechanism that allows users to install plugins on different

computers without having to configure the application in a special way. It

defines a distributed composition process that supports automatic composition

of extensions that are located on different computers. It defines a distributed

thread management that simulates a single coherent thread, which is assembled

from multiple distributed threads that are linked together. Finally, it defines an

interoperable interaction standard for distributed extensions that supports

reference identity, data synchronization, and garbage collection for distributed

objects.

 Multi-user support. Our extended component model defines a multi-user

discovery mechanism that allows every user or user group to install their

specific sets of plugins, which are kept in separate composition states. Thus,

every user can compose an application independently from other users.

Furthermore, our multi-user composition state uses separate memory areas for

user-specific extensions so that errors in users-specific extensions do not affect

other users.

 Web support. Our extended component model defines a deployment standard

that allows users to host Plux web applications on a web server. It defines an

exchangeable runtime thread that enables the web application to be executed in

a different runtime thread per round trip.

8.2 Open Issues

There are two open issues that could not yet be resolved by this thesis. Both are caused

by the transparent distribution of extensions across multiple computers. The first open

issue is about disconnected distributed objects that are still referenced, while the

second open issue is about complicated UI development for distributed extensions.

Disconnected Distributed Objects

In existing solutions, distribution support has to be programmed manually. Usually

distribution applies to just a few specific software parts, which can be tested very well.

Summary

164

Plux, however, allows distributing any extension to other computers. Thus, minor

programming mistakes may lead to errors that would not have occurred if an

extension were used locally. One example for such a mistake, which actually occurred

in practice, is not to unregister an event handler during decomposition.

As soon as a remote runtime node gets disconnected, all extensions that are living there

get decomposed. However, if one of the decomposed extensions forgets to unregister

one of its event handlers for an event of a remote extension, the next occurrence of this

event will try to call the event handler, which does not exist any longer, so an

exception will be thrown. Even though the notifier of the Plux composition

infrastructure, which invokes all event handlers for composition events, can handle

this situation, the same problem also occurs for events that are raised by extensions.

Thus, all extensions possibly have to deal with disconnected event handlers.

Furthermore, a disconnected event handler is just one example for this problem. The

same problem can happen for every reference to a proxy for a distributed object that is

kept after a distributed environment was disconnected.

This error can be avoided, if extensions are implemented in a clean way, so that all

references to distributed objects get released, as soon as an extension gets decomposed.

However, there is still a problem when an environment gets disconnected

unexpectedly, e.g., because of losing the network connection. In this case, references to

distributed objects cannot be released before the connection breaks. As a result,

extensions that are distributed across multiple computers may be faced with

unexpected exceptions caused by connection problems. Even though the Plux runtime

can deal with unhandled exceptions, extensions that are not aware of this problem may

get into an invalid state. In this case, the application needs to be restarted.

The problem of unexpected disconnection of distributed objects also exists in other

technologies such as remoting, but those technologies have better opportunities to

handle it, because distribution is implemented only in specific parts of an application.

Complicated UI Development for Thin Client Applications

The component model specifies a dedicated runtime thread, which is used for runtime

operations as well as for communication between extensions. Since extensions can be

distributed across multiple computers, it is a bad design to execute user interface

operations in the runtime thread, because distributed communication may lead to

delays and thus to bad responsiveness of the user interface. This is not a problem for

web user interfaces, which are displayed in a web browser. It is only a problem for user

interfaces that are implemented with an UI framework for desktop applications such as

Windows Forms or WPF (e.g., the user interface of client-side extensions that are

plugged into a web application). For such extensions, the UI thread should be different

from the Plux runtime thread. If the user interface is executed in some other thread

than the Plux runtime thread, extensions need to invoke method calls from the UI

thread into the Plux runtime thread and the other way around. This has to be done

asynchronously; otherwise there is no benefit of executing the user interface in a

Future Work

165

different thread than the Plux runtime thread. This makes the implementation of user

interfaces for distributed client-side extensions more complicated.

8.3 Future Work

There are ideas for improving the current component model. Some of the following

topics are already work in progress.

Connection Recovery

The current component model does not define concepts for recovering connections in

the case of unexpected connection losses. The component model could be extended

with mechanisms that try to reconnect an unintentionally disconnected runtime node

in order to avoid errors as described in the Section 8.2.

Persistence

In the current implementation of the composition infrastructure, a Plux runtime is

started at the beginning of a web session and is kept alive until the end of the session.

However, saving the current state of the runtime after each round trip and restoring it

for the next round trip would reduce memory consumption on the server and would

enable the use of server farms. The Plux composition library already implements a

prototype for saving and restoring the composition state of the runtime, but an

infrastructure that integrates this library into the server runtime is still missing.

Interoperability

The current Plux composition infrastructure is implemented under .NET. However,

since the concepts of the component model are language independent, the composition

infrastructure could also be implemented in other languages. This would allow users

to connect .NET extensions with Java extensions, say. A Master's thesis [Spasov, 2013]

already ported the base component model for desktop applications to Java. However, a

port of the extended component model for the web is still missing.

Distributed Locking

The distributed interaction standard defines a distributed runtime thread that is

implemented with multiple threads on different computers that simulate a single

coherent thread. This works for executing code in a distributed thread, but the current

implementation does not support a distributed locking mechanism. Therefore locks

only work locally, but not on distributed components. A distributed locking

mechanism would enable thread synchronization across computer boundaries.

Resource Constraints

Since users are allowed to install user-specific extensions on the web server, the current

component model maintains separate memory areas for user-specific extensions in

Summary

166

order to avoid interference between extensions of different users. However, user-

specific extensions that are executed on the server do not only increase the risk of

executing error-prone extensions on the server, they also consume CPU and memory

resources on the server. In order to avoid server congestion, resource constraints could

limit CPU and memory consumption for user-specific extensions. Thus, users could

only install a set of user-specific extensions that do not exceed the limit of resource

consumption, which is permitted for a certain user. If user-specific extensions would

exceed this limit, they could be automatically decomposed.

Debugging Support

In distributed applications, code is executed on different computers. Even though the

distributed thread management simulates a single coherent thread across multiple

computers, the code is still executed in different threads and method calls are

transported from one thread to another via messages. As a result, debugging is

difficult, because there is no continuous call stack. Additional debugging support for

distributed threads would be helpful.

8.4 Conclusion

This thesis presented a novel approach for building plugin-based distributed multi-

user web applications. It defined a component model that specifies a metadata

standard that allows adding and removing plugins in a plug-and-play manner, a

deployment standard that maintains local and remote plugins for individual users, a

composition standard that connects independent plugin components seamlessly to a

coherent web application, an interaction standard that enables local and distributed

communication between plugin components, and a customization standard that

maintains optional settings for plugins. The concepts that are presented in this thesis

are validated with a composition infrastructure that implements the specifications in

the component model as well as with case studies.

The composition infrastructure provides a platform that assembles user-specific web

applications from plugins that are deployed locally on a single computer or distributed

across multiple computers. Implementation transparency for distributed components

allows developers to implement remotely connected components in the same way as

locally connected components. This simplifies the implementation of distributed

applications and allows reusing the same components on different environments.

Thus, components can be reused to build different architectures for applications, such

as pure desktop applications, thin client applications, pure web applications, and rich

web applications. Furthermore, since the presented concepts are language

independent, the composition infrastructure allows building applications that are

composed from components that are developed with different technologies, for

example from .NET components and from Java components.

167

Appendix A: Hosting Plux Web Applications

This chapter describes how to host a Plux web application within an ASP.NET

web page by using a web control. It explains the structure of the virtual

directory for an ASP.NET web application, the location of the various Plux

assemblies that implement the composition infrastructure, and how to

customize and extend the composition infrastructure for specific needs.

The current implementation of the Plux component model is realized with the .NET

framework [Microsoft, 2012g]. Therefore, Plux web applications are hosted within

ASP.NET [Microsoft, 2012k] web applications, which can be published, for example,

with the Microsoft Internet Information Server (IIS) [Microsoft, 2013c]. An ASP.NET

web application is stored in a virtual directory, which contains web pages, library

assemblies, and other resources, such as images and configuration files. A Plux web

application is accessed through a web page in the virtual directory. The web page

contains a Plux web control, which starts the Plux server runtime and accesses it on

subsequent web requests.

An ASP.NET virtual directory contains several predefined directories with special

meanings. Figure A.1 on the next page shows an example of how these predefined

directories are used to host a Plux web application in a virtual directory named

TimeRecorder:

 The directory App_Data is used for storing data of any kind, e.g., database files

or XML files. For example, the Plux FileLogger uses this directory as its default

location for its log files.

 The directory Bin contains all assemblies that are used by an ASP.NET web

application. These assemblies can either be precompiled ASP.NET web pages,

or other assemblies that are referenced by web pages, such as the assembly

Plux.Web.AspNET.dll, which contains the Plux web control. The Plux web

control is used in ASP.NET web pages to accesses the Plux server runtime

when the control is rendered (see Section A.1 below). The Plux.Web.AspNET.dll

references the assemblies Plux.dll, Plux.Web.dll, and Plux.Web.Server.dll. Plux.dll

implements the base component model and is used for Plux desktop

applications and for Plux web applications; Plux.Web.dll implements the main

Appendix A: Hosting Plux Web Applications

168

parts of the component model for the web, which are used in both, the server

runtime and the client runtimes; and Plux.Web.Server.dll implements the

composition infrastructure that is required for the server runtime. However, the

Bin directory does not contain contracts, plugins, or user-specific library

assemblies for Plux applications. These assemblies are stored in the Repository

directory.

 The ClientBin directory contains the Silverlight assemblies of the web

application, which are transferred to the client-side on demand, if a Silverlight

plugin is composed. Beside the Silverlight assemblies Plux.dll and Plux.Web.dll,

the ClientBin directory contains the assembly Plux.Web.Client.dll, which

implements the composition infrastructure for the client runtime of the

Silverlight environment.

 The Repository directory is the default directory for contracts, plugins, and

libraries of Plux web applications. The structure of this directory is described in

Section 5.2 Deployment Standard on page 100.

Furthermore, the virtual directory for the TimeRecorder web application contains the

web page TimeRecorder.aspx with the Plux web control, and file Web.config, which

contains the configuration of the ASP.NET web application, as well as the

configuration of the Plux server runtime. The Plux web control and the configuration

file are described in the following subsections.

A.1 The Plux Web Control

The Plux server runtime can be created and accessed either programmatically by code,

or automatically by the Plux web control. This section describes how to include the

Plux web control in an ASP.NET web page. Listing A.1 shows an ASP.NET web page

Figure A.1: Structure of the virtual directory for a Plux

web application hosted with ASP.NET

Runtime Configuration

169

that includes the Plux web control. The web page starts with the directive <%@ Page>,

which specifies, among other things, the language in which an associated code behind

file is written and where to find the associated code behind file.

In order to make the Plux web control known to the ASP.NET page, the assembly

Plux.Web.AspNET.dll has to be registered with the directive <%@ Register>. This

directive specifies the assembly that implements the control, the control's namespace,

and a tag prefix (plux) that is used to qualify the control in the web page. The Plux web

control is included within an HTML form tag. The name of the control is Application,

therefore it is included with the tag <plux:Application runat="server"/>, where plux is the

registered prefix and Application is the class name of the web control. ASP.NET

requires both tags to specify the attribute runat="server". The web control can be

included with an empty tag, as it is shown in Listing A.1, or it can contain

configuration properties to customize the server runtime, e.g., to specify an application

name or to set the location of the plugin repository. However, the server runtime can

also be configured by a configuration file for the web application, as it is described in

the following section.

When the web page is rendered for the first time, the web control creates the server

runtime and instructs it to create a runtime node for the current session. Then it

forwards the web request to the Plux application. The Plux application processes the

web request and returns the result to the web page, which replaces the web control

with the result in the rendered web response.

A.2 Runtime Configuration

The Plux runtime can be configured with various settings to customize it for the user's

need. Furthermore, as the Plux runtime is built from exchangeable modules, it can be

adapted and extended by further modules, where each module can have its individual

<%@ Page Language="C#" CodeBehind="TimeRecorder.aspx.cs" ... %>
<%@ Register Assembly="Plux.Web.AspNET" Namespace="Plux.Web"
 TagPrefix="plux" %>

<!DOCTYPE ... >
<html>
 <head>
 <title>Time Recorder</title>
 </head>
 <body>
 <form id="form1" runat="server" >
 <plux:Application runat="server" />
 </form>
 </body>
</html>

Listing A.1: Structure of an ASP.NET web page with a Plux web control

Appendix A: Hosting Plux Web Applications

170

configurations, too. Configurations for the runtime and its modules can be specified

programmatically with the runtime initializer or declaratively with a configuration file.

As the component model is implemented with the .NET framework, the configuration

for the runtime is specified in a .NET Application Configuration File, which is an XML file

that is called Web.config.

Listing A.2 shows an example of a configuration file for the Server Runtime. In order to

allow Plux configurations to be set and retrieved by the ASP.NET configuration model,

they need to be declared in the <configSections> element of the configuration file. Thus,

the configuration element <section> declares a Plux configuration section with its name

and the type of the configuration section handler, which implements the configuration

model of Plux. After the Plux configuration section has been declared, it can be used

below and is enclosed within the <plux> configuration element.

The Plux configuration section consists of global configuration elements and module

configuration elements. Module configuration elements are grouped into

configurations for core modules, for web modules, and for server modules. Each of them

specifies the type of the module, which is instantiated at start-up. The module type

must implement the interface of the corresponding runtime module. Furthermore,

module configuration elements can have sub elements to specify further configurations

for the module. However, as all configuration elements are optional, module

configuration elements can be omitted. In this case, the default type and the default

configuration for the particular runtime module is used.

Values in the Plux configuration section can contain placeholders, which are enclosed

within braces, as well as wildcards, which are indicated by asterisks. Placeholders and

wildcards are replaced by concrete values when the configuration values are retrieved.

Plux specifies the placeholders {user}, {group}, {application}, and {path}. The placeholder

{user} is replaced by the name of the user of the current session. The {group} placeholder

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <configSections>
 <section name="plux" type="Plux.Configuration, Plux.Web.Server"/>
 </configSections>

 <plux>
 <application name="TimeRecorder" company="ASE" version="0.1"/>

 <environmentUri value="plux://timerecorder.jku.at:25400" />

 <createAppDomain value="true" />

 <startupPaths>
 <add path="Repository/Base/Server/Plux.Web.Discoverer.dll" />
 </startupPaths>

 <arguments>
 <add key="imagePath" value="/Resources/Images" />
 </arguments>

Runtime Configuration

171

generates a collection of values, where the placeholder is replaced with the name of the

current user and with all group names to which the user is a member. The {application}

placeholder is replaced with the name of the application, which is set via the

Application configuration element (see below). Finally, the {path} placeholder is replaced

with the path element of the runtime's environment Uri (see below). The path of an Uri

is the part between the authority and the query. For example the path of the Uri

plux://localhost:25400/TimeRecorder/Images?fullscreen=true is /TimeRecorder/Images. The

example in Listing A.2 uses the placeholders {user} and {group}.

Wildcards are used in configuration values that specify a path. A single asterisk at the

end of a path is replaced with a collection of paths containing all sub elements of the

path. The double asterisk wildcard is replaced with a collection of paths that contains

all sub elements of the path recursively. The example in Listing A.2 uses wildcards for

 <coreModules>
 <dispatcher type="Plux.Web.Dispatcher, Plux.Web" />
 <loader>
 <add path="Repository/{group}/Server/**" />
 </loader>
 <logger>
 <add type="Plux.ConsoleLogger, Plux" verbosity="Normal"/>
 <add type="Plux.FileLogger, Plux" verbosity="Diagnostic"
 path="App_Data/Logs/{user}.log" />
 </logger>
 </coreModules>

 <webModules>
 <channel type="Plux.Web.TcpChannel" timeout="999" />
 <serializer>
 <formatters>
 <add type="System.Collections.Generic.List<>, mscorlib.dll"
 formatter="Plux.Web.ListFormatter, Plux.Web"/>
 ...
 <formatters/>
 </serializer>
 </webModules>

 <serverModules>
 <userStore type="Plux.Web.ConfigUserStore, Plux.Web">
 <add name="base" />
 <add name="ssw" parents="base" />
 <add name="mj" parents="ssw, base" />
 </userStore>
 </serverModules>

 <addons>
 <add type="..." />
 </addons>

 </plux>
</configuration>

Listing A.2: Structure of the configuration file Web.config

Appendix A: Hosting Plux Web Applications

172

the loader paths, which are the paths to the directories from where assemblies can be

loaded.

The following sub sections describe the configuration elements, which are shown in

Listing A.2. Since many module configuration elements do not have further

configuration options, they are omitted in the example.

Application

The <application> element specifies the application name, the company of the

manufacturer, and the version of the application. The application information can be

used to display it in the user interface. Furthermore, it is used in the connection string

that is generated for connecting remote runtime nodes. Thus, multiple Plux web

applications can be hosted within a single ASP.NET web page.

Environment Uri

The <environmentUri> element specifies an Uri that is used to connect remote runtime

nodes to the server runtime. The listener of the server runtime accepts connections on

the address of the environment Uri.

Create AppDomain

The <createAppDomain> element specifies whether the runtime should create separate

AppDomains for user-specific plugins of different users. If the value is set to false, all

plugins get loaded into the same AppDomain.

Startup Path

The <startupPath> element specifies the paths to the directories or files which should be

initially discovered and composed at start-up time. In Listing A.2 the plugin

Plux.Web.Server.Discoverer.dll is the plugin to be composed initially. As soon as this

plugin is plugged to the Plux core, it discovers the other plugins for the current user.

Arguments

The <arguments> element specifies a collection of key value pairs, which can be

retrieved by all extensions of the web application. It can be used, for example, to

specify a path to a common resource.

Dispatcher

The <dispatcher> element specifies the type of the dispatcher module that should be

instantiated for the runtime. This configuration element is empty, because the

dispatcher has no further configurations. As the Plux.Web.Dispatcher is the default

dispatcher type for each web runtime, this element could be omitted.

Runtime Configuration

173

Loader

The <loader> element specifies the locations from which assemblies can be loaded. The

example shows the path Repository/{group}/Server/**. When this value is retrieved, the

{group} placeholder is replaced with the name of the current user and with all group

names of the user, e.g., if the user Markus is the only member of the group Base, the

path is resolved to the paths Repository/Markus/Server/** and Repository/Base/Server/**.

The wildcard at the end of the path specifies that the assemblies in all recursive sub

directories can be loaded, too. Thus, the assemblies in the Server directory can be

organized into sub directories, for example into the directories Contracts, Plugins, and

Libraries. As there is no type specified in the <loader> element, the default loader is

used.

Logger

The <logger> element specifies which logger should be used by the runtime. This

element allows registering multiple loggers at the same time. For this, multiple logger

types can be set by sub configuration elements. The configuration file of the example

above specifies two loggers: the ConsoleLogger, which writes its log messages to a

console window, and the FileLogger, which writes its log messages into a log file. Each

logger can have a verbosity level that specifies the detail level for the messages to be

logged. Furthermore, some loggers, such as the FileLogger, specify a path that is used as

a target location for the log messages. The FileLogger in the example uses a separate log

file per user, which is specified by the {user} placeholder.

Channel

The <channel> element specifies which channel type is supported by the runtime to

communicate with remote runtime nodes. Similar to the configuration for the logger,

the <channel> element can specify multiple supported channels. All supported channels

are provided to remote environments when a connection is established. Remote

environments can thus choose the channel type for communication. The timeout

attribute specifies the amount of time the channel will wait until it raises an exception.

Serializer

The <serializer> element specifies an optional serializer type as well as the formatters

that should be used for object serialization. Since the type of an object defines the

formatter to be used, formatters are registered with the object type as their key, and the

formatter type as their value. All registered formatters need to be available on each

connected runtime node.

User Store

The <userStore> element specifies the type of the user store to be used. The

Plux.Web.ConfigUserStore is a simple user store that can be used during application

Appendix A: Hosting Plux Web Applications

174

development. It allows specifying users and their groups directly in the configuration

file just by adding their names and their parents as sub configuration elements.

Add-ons

The <addons> element is used to register runtime add-ons that should be included by

the runtime. Sub elements specify the type of the add-on, which gets instantiated at

start-up time and which connects itself to the hooks of runtime modules when it gets

initialized.

175

Appendix B: Runtime Procedures

The component model specifies operations and processes, the implementations of

which are not trivial. This appendix provides a number of sequence diagrams

that describe runtime procedures, which implement the specified operations and

processes.

B.1 Runtime Lifetime

The lifetime of the runtime comprises three phases: Startup, Run, and Shutdown. Each

phase differs between the server runtime and the client runtime. The Startup phase and

the Shutdown phase are described in an individual sequence diagram for both, the

server runtime and the client runtime. The Run phase is described in a single sequence

diagram, but has a parameter to differ the behavior between the server runtime and the

client runtime.

B.1.1 Startup

The Plux Runtime is created and configured by an Initializer, which reads the

configurations from the runtime settings file (see Section A.2 Runtime Configuration).

First the initializer creates the runtime with its runtime modules (see

Section 6.1 Composition Infrastructure). When the runtime is created, its runtime state

is Created, its dispatcher is Released, and the coordinator does not have the Token and it

is Idle. The state Idle indicates that the runtime thread is currently not running, i.e., the

dispatcher either is released, or the runtime thread is waiting for a new dispatcher

operation to be executed. Now the runtime can be initialized and started.

Server Runtime

The server runtime is started via the Server Initializer. Its Start method calls the

coordinators Init method with the token as an argument. In Init, the coordinator

acquires the dispatcher, sets the token, and registers the dispatcher event handlers

Acquiring, Acquired, OpEnqueuing, OpEnqueued, OpFinished, Releasing, and Released.

These event handlers are used for thread management and communication

coordination; their implementation is described in the following sections below. As Init

acquires the dispatcher, it returns in the runtime thread 1.0. Thus, the runtime thread

Appendix B: Runtime Procedures

176

now is executing and the coordinator is Not Idle. After initializing the coordinator, it is

ready for thread management and for coordinating the communication with connected

environments.

Next, the initializer asynchronously invokes the first dispatcher operation to be

executed when the dispatcher is started, which is the Start method of the runtime. As

the dispatcher is Acquired and as the coordinator has the Token and is Not Idle, the

OpEnqueued event handler has nothing to do in this case (see Section B.2.3 below).

Now the initializer calls the coordinator's Run method with Not Wait as an argument,

which indicates that the Run method should return after all dispatcher operations are

finished. The coordinator's Run method (see Section B.1.2 below) starts the dispatcher

by calling the dispatcher's Run method, again with Not Wait as an argument. The

dispatcher executes the enqueued dispatcher operation Start, which performs

bootstrap discovery and the initial composition of the Plux application. After starting

the runtime, its runtime state is Running. As soon as the dispatcher's Run method

returns, the coordinator's Run method returns too, and the runtime is started.

Figure B.1: Starting the server runtime

Runtime Lifetime

177

As the server runtime does not block the runtime thread, but acquires the dispatcher

on demand when it needs to execute code in the runtime thread, the initializer finally

releases the dispatcher. When the initializer's Start method returns, the runtime is

Running, the dispatcher is Released, and the coordinator has the Token and is Idle.

Client Runtime

The client runtime is started via the Client Initializer. The Client Initializer's Start method

starts a new thread, which is used as runtime thread for the whole runtime lifetime.

After the initializer's Run method is started in the new thread, the Start method waits

until the client runtime is connected. Run now calls the coordinator's Connect method,

which connects the runtime to the server runtime. Additionally, Connect initializes the

Figure B.2: Starting the client runtime

Appendix B: Runtime Procedures

178

coordinator. It registers the event handlers, Acquiring, Acquired, OpEnqueuing,

OpEnqueued, OpFinished, Releasing, and Released, requests the token, and acquires the

dispatcher. Connect returns in the runtime thread 1.0; the dispatcher is Acquired, and

the coordinator has the Token and is Not Idle.

As soon as the runtime is connected, the initializer resumes its waiting Start method

and calls the coordinators Run method with Wait as an argument, which indicates that

the coordinator should block the runtime thread, when it is idle. The coordinator's Run

method checks whether the dispatcher has any enqueued dispatcher operations. If not,

it blocks the runtime thread and sets its state to Idle. Otherwise, it would call the

dispatcher's Run method to execute the enqueued operations.

After the Client Initializer's Start method is resumed, it synchronously invokes the

runtime's Start method, i.e., the dispatcher's Invoke method returns after executing Start

is finished. When the coordinator receives the OpEnqueued event, it resumes the

runtime thread and sets its state to Not Idle, if it was Idle. The runtime thread continues

and calls the dispatcher's Run method with Not Wait as an argument. The dispatcher

executes the runtime's Start method, which bootstrap discovers the client-side plugins

and plugs them to the connected server-side application. After that, the client runtime

is Running, the dispatcher's Run method returns to the coordinator, and the Invoke

method returns to the initializer. The coordinator again blocks the runtime thread,

until a new dispatcher operation is enqueued. The initializer now returns the Start

method and the runtime is started.

B.1.2 Run

The coordinator's Run method implements a main part of the coordinator's thread

management. It starts the dispatcher, executes enqueued dispatcher operation, and

passes the token to connected runtime nodes, if they need them to continue executing

in the runtime thread there. Its parameter Wait defines whether the method should

return after the dispatcher's operation queue is empty, or if it should block the runtime

thread until a new dispatcher operation is enqueued. Run always must be called within

the runtime thread 1.0. Thus, at the beginning the dispatcher must be Acquired, the

coordinator needs to have the Token and it is Not Idle.

If Run should not wait after the dispatcher is finished, it adds the current environment

id to the token terminus. The token terminus is a list of environments to which the

token is sent, as soon as the runtime thread is idle. This is necessary for all

environments that do not block the runtime thread, but release the dispatcher when the

runtime thread is idle. Otherwise, if the last dispatcher operation is executed on a

remote environment, this environment would keep the token until it receives a new

dispatcher operation from another environment. As the current environment needs the

token to continue executing the runtime thread in order to be able to release the

dispatcher, it needs the token after the dispatcher idle.

Runtime Lifetime

179

As Run needs to check the state of the dispatcher, which is changed from different

threads, the coordinator uses a Lock object, which is set and released when the

dispatcher state is retrieved and when the dispatcher state is modified. Run enters a

loop, if either the dispatchers operation queue is not empty, or Run is waiting for new

dispatcher operations if the dispatcher is idle, and the runtime state is not Terminated.

The body of the loop behaves different whether the operation queue is empty, or not.

If the operation queue is not empty, the coordinator checks whether the next

dispatcher operation was enqueued from the local environment with the id E, or from

a remote environment. If it is a local dispatcher operation, the coordinator starts the

dispatcher by calling the dispatcher's Run method. If it is a remote operation, it does

not start the local dispatcher, but sends to token to the remote environment. This

continues executing the runtime thread there and thus the remote dispatcher operation

gets executed on the remote environment. After sending the token, the current

environment does not have the token anymore and blocks the runtime thread until it

Appendix B: Runtime Procedures

180

receives the token again. This will happen because either a further dispatcher operation

needs to be executed in the local environment, or because all dispatcher operations are

finished and the token terminus was set to the local environment.

If the operation queue is empty (at the beginning of the loop), then it is guaranteed that

Run was called with Wait as an argument and the runtime state is Running. Otherwise,

the loop would not have been entered. In this case, the runtime thread is Idle and thus

checks whether the token terminus is set to any environment.

If no token terminus is set, the coordinator blocks the runtime thread until a new

dispatcher operation is enqueued. This can be done from another local thread, or from

a remote environment with the Invoke communication operation (see Section 5.4.3).

When the coordinator handles the OpEnqueued event, it resumes the runtime thread, if

Figure B.3: Running the coordinator

Runtime Lifetime

181

the dispatcher is Acquired, and the coordinator has the Token and it is Idle (see

Section B.2.3 below). Afterwards the loop continues at the beginning and starts

executing the enqueued operation.

If the token terminus is set to a remote environment, the coordinator sends the token to

the according environment and blocks the runtime thread, because it does not have the

token anymore. As soon as the token is replied to the current environment, e.g.,

because a local thread enqueued a dispatcher operation, the coordinator resumes the

local runtime thread and continues execution.

When Run exits its loop, because the dispatcher's operation queue is empty and Run is

not waiting, Run removes the token terminus from the token and returns to its caller.

B.1.3 Shutdown

The Shutdown phase decomposes the application and disconnects runtime nodes. The

following subsections describe the Shutdown phase for the server runtime and the client

runtime.

Server Runtime

Shutdown on the server runtime shuts down all client runtimes too. The runtime

method Shutdown first acquires the dispatcher and asynchronously enqueues the

dispatcher operation ShutdownClients. Afterwards, it calls the coordinator's Run

Appendix B: Runtime Procedures

182

method, which starts the dispatcher. Thus, the dispatcher executes the coordinator's

method ShutdownClients, which iterates over all connected environments and sends a

Call operation with the runtime's Shutdown method as an argument to all of them. This

causes that all clients decompose their extensions, remove all their plugins, and finally

disconnect themselves (see Shutdown Client Runtime below). When the dispatcher has

finished all dispatcher operations, all clients are terminated and disconnected. Now the

server runtime decomposes all its extensions, removes its plugins, and stets its runtime

state to Terminated. Finally Shutdown releases the dispatcher and returns to its caller.

Client Runtime

Shutdown on the client runtime decomposes and removes all client-side plugins and

disconnects the runtime node from all its connected environments. The runtime's

Shutdown method is either called by the server, if the server runtime is terminating, or

it is enqueued as dispatcher operation on the client-side, as it is shown in the figure

below.

During executing Shutdown, the runtime decomposes and removes all client-side

plugins, sets its runtime status to Terminated and asynchronously invokes the

coordinator's Disconnect method. Shutdown does not call Disconnect immediately,

because at the time when Shutdown is executed, some client-side extensions may

already have enqueued some dispatcher operation before Shutdown was called, or

some extensions may enqueue a dispatcher operation during their termination. As

soon as the runtime state is Terminated, client-side code is not allowed anymore to

enqueue new dispatcher operations (see Section B.2.3 below). Thus, Disconnect is the

last dispatcher operation that is executed on the Client environment.

The Disconnect method iterates over all connected environments and sends the

Disconnect operation to them. The Server is the last environment to which the Disconnect

operation is sent. The last Disconnect operation instructs the Server via an argument, to

keep the token even though the Reply message is sent within the runtime thread. After

Figure B.4: Shutting down the server runtime

Dispatcher Operations

183

every runtime node is disconnected, the coordinator does not have the token anymore

and removes all remaining dispatcher operations from the dispatcher queue by calling

the dispatcher's Clear method. Before that, there may are some remote dispatcher

operations in the queue, which still will be executed, because the token was passed to

the Server environment. After the dispatcher queue is empty, the dispatcher's Run

method returns to the coordinator. As the runtime state now is Terminated, the

coordinator's Run method returns too, by which finally the runtime thread terminates.

B.2 Dispatcher Operations

The dispatcher is used to invoke method calls from any thread in the runtime thread.

In order that the coordinator can coordinate the distributed runtime thread it needs to

handle certain of dispatcher events, which are raised when the dispatcher gets

Figure B.5: Shutting down the client runtime

Appendix B: Runtime Procedures

184

acquired and released, or when dispatcher operations get enqueued. The following

subsections describe the implementations of these event handlers.

B.2.1 Acquire

Acquire is used to set the executing thread to the dispatcher thread, i.e., to the runtime

thread. Acquire raises an Acquiring event just before the dispatcher changes its state to

Acquired and an Acquired event just after it has changed its state. As the coordinator

checks in some methods whether the dispatcher currently is Acquired or not, the

coordinator requests the Lock object in the Acquiring event handler in order that the

dispatcher's Acquired state cannot be changed while the coordinator is performing any

other operation in which it currently holds the Lock object.

As soon as the dispatcher is Acquired, the runtime thread is not idle anymore and thus

the coordinator changes its state to Not Idle. Since the coordinator needs the token to be

Figure B.6: Acquiring the dispatcher

Dispatcher Operations

185

allowed to execute code in the runtime thread, the coordinator checks whether the

local environment currently has the token. If not, the coordinator requests the token by

sending the GetToken operation to its connected environments and waits until it

receives the token. Every time before the coordinator is waiting, it releases its Lock

object in order that other operations in other threads can be executed while the current

thread is waiting.

When the coordinator receives the token, it again requests its Lock object and resumes

the waiting runtime thread as the local environment now has the token. Finally the

coordinator releases the Lock object and the local environment can continue execution

in the runtime thread.

B.2.2 Release

Release is used to unset the current thread as dispatcher thread, i.e., as runtime thread.

The dispatcher gets released when the runtime thread is idle, but the runtime thread

should not be blocked. Release only can be called in the runtime thread. Since Release is

only allowed to be called in the runtime thread, it is guaranteed that the coordinator

currently has the token and the state of the coordinator is Not Idle.

The event handler Releasing requests the Lock object so that the dispatcher's Acquired

state does not change, while other threads check the state of the dispatcher. After the

dispatcher is released, it calls the Released event handler, which sets the state of the

coordinator to Idle and checks whether dispatcher's operation queue is empty.

Appendix B: Runtime Procedures

186

If the dispatcher's operation queue is empty, the coordinator checks whether a token

terminus is set. If so, it sends the token to the environment that is set as token terminus.

If the dispatcher's operation queue is not empty, then the remaining dispatcher

operations need to be executed. Thus, the coordinator calls AcquireAndRun, which uses

another thread to acquire the dispatcher, call the coordinator's Run method, and

release the dispatcher afterwards (see AcquireAndRun below).

Finally, the Released event handler releases the coordinator's Lock object.

AcquireAndRun

AcqurieAndRun acquires the dispatcher, calls the coordinator's Run method with

NotWait as an argument, and releases the dispatcher again. This method is used when

the dispatcher gets released, while there are still dispatcher operations in the operation

queue. AcquireAndRun also is used when a dispatcher operation gets enqueued, while

the dispatcher is released, but the coordinator has the token (see Section B.2.3 below).

Figure B.7: Releasing the dispatcher

Figure B.8: Acquire and run the dispatcher to empty the operation queue

Dispatcher Operations

187

B.2.3 Invoke and BeginInvoke

Invoke and BeginInvoke are used to enqueue an operation in the dispatcher's operation

queue in order to start the execution of a method from any thread in the dispatcher

thread. The difference between Invoke and BeginInvoke is that Invoke does not return

until the operation is executed, while BeginInvoke returns just after the operation was

enqueued. The following figures only show the BeginInvoke method to describe the

event handlers for the different dispatcher events. However, the dispatcher events for

Invoke are the same. As soon as a dispatcher operation is enqueued in any thread, the

dispatcher raises the OpEnqueuing event just before it enqueues the operation and the

coordinator requests its Lock object, because the state of the dispatcher is about to be

changed.

Figure B.9: Enqueuing a dispatcher operation

Appendix B: Runtime Procedures

188

An operation only can be enqueued, if the runtime state is not Terminated. If the

runtime already is Terminated, the OpEnqueuing event handler throws an exception (see

subsection below).

When the dispatcher operation is enqueued, the coordinator handles OpEnqueued

event, which behaves different depending on the current state of the dispatcher and

the state of the coordinator. Since there are many different cases for the OpEnqueued

event handler, the different cases are described in the subsections below. At the end of

OpEnqueued, the coordinator releases the Lock object.

After the execution of the operation is finished, the dispatcher raises the OpFinished

event. The event handler again requests the Lock object and checks whether the next

dispatcher operation was enqueued from a remote environment. If so, it sends the

token to this environment to continue executing there and waits until the local

environment receives the token again. Before the coordinator calls Wait, it releases the

Lock object. As soon as the token is received again, the Lock object is requested and the

runtime thread continues executing. At the end of OpFinished, the coordinator releases

its Lock object.

Invoke and BeginInvoke (Terminated)

It is not allowed to enqueue new dispatcher operations using Invoke or BeginInvoke if

the runtime state is Terminated. In this case, the OpEnqueuing event handler throws an

exception before the dispatcher enqueues the operation in its operation queue.

OpEnqueued (¬Token)

When a dispatcher operation was enqueued while the coordinator does not have the

token, the operation queue of the local dispatcher does not have a valid state. Thus, the

operation needs to be sent to the environment that has the token. For this, the event

handler uses the Invoke communication operation (see Section 5.4.3) with the

dispatcher operation as an argument.

Figure B.10: OpEnqueuing event handler (Terminated)

Dispatcher Operations

189

OpEnqueued (Token ˄ ¬Idle)

When a dispatcher operation was enqueued while the coordinator has the token and its

state is Not Idle, the OpEnqueued event handler has nothing to do.

OpEnqueued (Token ˄ Idle ˄ Acquired)

When a dispatcher operation was enqueued while the coordinator has the token, its

state is Idle, and the dispatcher is Acquired, it is guaranteed that the runtime thread

currently is waiting. In this case, the coordinator resumes the runtime thread and sets

its state to Not Idle.

Figure B.11: OpEnqueued event handler (¬Token)

Figure B.12: OpEnqueued event handler (Token ˄ ¬Idle)

Figure B.13: OpEnqueued event handler (Token ˄ Idle ˄ Acquired)

Appendix B: Runtime Procedures

190

OpEnqueued (Token ˄ Idle ˄ Released)

When a dispatcher operation was enqueued while the coordinator has the token, its

state is Idle, and the dispatcher is Released, the coordinator checks whether the

operation was enqueued from the local environment, or from a remote environment

via the Invoke communication operation. If it is a local dispatcher operation, the

coordinator calls AcquireAndRun (see Section B.2.2) to start the dispatcher. If it is a

remote dispatcher operation, the coordinator sends the token to the remote

environment to continue execution of the dispatcher operation there.

Figure B.14: OpEnqueued event handler (Token ˄ Idle ˄ Released)

191

 List of Figures

Figure 2.1: Capabilities of existing technologies .. 30

Figure 3.1: Metadata for Plux extensions with slots and plugs 40

Figure 3.2: Metadata of a slot and a plug named "A" defined in a slot definition 41

Figure 3.3: User interface and extensions of a workbench application 42

Figure 3.4: Discoverer extension plugged into the Discovery slot of the Plux core....... 44

Figure 3.5: Metadata extracted by the discoverer from the contract and the

plugins of the workbench application ... 44

Figure 3.6: Meta-objects for instantiated extensions in the composition state 45

Figure 3.7: Window menu in the user interface of the workbench application 46

Figure 3.8: Composition state before and after the Create operation 48

Figure 3.9: Composition state before and after the Plug operation 49

Figure 3.10: Composition state before and after the Activate operation 49

Figure 3.11: Composition state before and after the Open operation 49

Figure 3.12: Composition state before and after the Tag operation 50

Figure 3.13: Composition events for the Plux composition operations.......................... 52

Figure 3.14: Customizable view arrangement in the workbench example using

containers ... 53

Figure 3.15: Composition sequence comprising the composition operations that

compose a host with a contributor ... 55

Figure 3.16: Composition properties to enable or disable automatic composition

for specific composition operations ... 56

Figure 3.17: Composition sequences triggered as subsequences by hosts that

retrieve the extension objects of their contributors 58

Figure 3.18: Composition sequence triggered by a discoverer that adds a new

extension .. 59

file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886504
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886505
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886506
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886507
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886508
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886509
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886509
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886510
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886511
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886512
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886513
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886514
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886515
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886516
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886517
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886518
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886518
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886519
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886519
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886520
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886520
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886521
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886521
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886522
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886522

List of Figures

192

Figure 3.19: Composition sequence comprising the composition operations that

compose a host with multiple contributors .. 60

Figure 3.20: Multiple hosts use separate instances of a contributor (non-shared),

or use a common instance of a contributor (shared).................................... 61

Figure 3.21: Decomposition sequences triggered by the Plux garbage collector

after a host was unplugged ... 62

Figure 3.22: Relationship between two slots that have to be filled in a certain order .. 64

Figure 3.23: Controlling the composition process by combining automatic and

programmatic composition ... 64

Figure 3.24: Composition operations for extensions, slots, and plugs 65

Figure 3.25: Composition behavior performing and blocking composition

operations depending on composition events and the composition

state ... 68

Figure 3.26: Rule-based composition behavior translating composition events and

the composition state of a composition operation to a composition

rule .. 71

Figure 3.27: A PlugBehavior with a ReplaceRule ensures that there is only one

contributor plugged at the same time .. 72

Figure 3.28: Setting the focus of a view by the use of the composition state with

the Focus tag .. 73

Figure 3.29: Binding the composition state to the user interface of an application 77

Figure 3.30: Modifying the composition state via the user interface 78

Figure 3.31: The visualizer presents the current composition state in a graphical

manner and allows users to modify the composition state 81

Figure 3.32: The console provides a text-based interface to the composition state

of an application .. 82

Figure 4.1: Base composition of the time recorder web application 89

Figure 4.2: User interface of the time recorder web application 89

Figure 4.3: Extending a web application with a user-specific server-side

extension .. 90

Figure 4.4: Extending a web application with a user-specific client-side extension ... 91

Figure 4.5: Extending a web application with a client-side extension for multiple

users .. 93

Figure 4.6: User interface of HardwareRecorder extension that is executed on a

remote computer ... 93

file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886523
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886523
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886524
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886524
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886525
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886525
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886526
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886527
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886527
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886528
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886529
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886529
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886529
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886530
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886530
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886530
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886531
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886531
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886532
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886532
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886533
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886534
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886535
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886535
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886536
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886536
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886537
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886538
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886539
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886539
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886540
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886541
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886541
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886542
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886542

List of Figures

193

Figure 4.7: Extending a web application with sandbox extensions that are

installed on the server, transferred to the client on demand, and

executed there in a sandbox .. 94

Figure 4.8: User-specific composition composed by server-side, client-side and

sandbox extensions ... 95

Figure 5.1: Discovery of user-specific server-side, client-side, and sanbox plugins 100

Figure 5.2: Discovery of user-specific and user group-specific plugins using a

user store and a configuration file.. 102

Figure 5.3: Individual composition states per user with extensions that are

executed in user-specific and group-specific memory areas 105

Figure 5.4: Logical view of the distributed composition state with meta-objects

and extension objects ... 107

Figure 5.5: Implementation of the distributed composition state with meta-object

copies and proxy objects .. 108

Figure 5.6: Composing distributed extensions using token passing 110

Figure 5.7: Elements of a sequence diagram .. 112

Figure 5.8: Acquiring the dispatcher to process a web request in the runtime

thread ... 115

Figure 5.9: Executing a remote operation in the distributed runtime thread 116

Figure 5.10: Assembling a distributed runtime infrastucture.. 118

Figure 5.11: Executing a token operation on the environment with the token 121

Figure 5.12: Output of the object formatter and the type formatter 129

Figure 5.13: Implementing object reference identity by using reference stores 130

Figure 5.14: Achieving object data synchronization by the use of a profile store 131

Figure 5.15: Incremential data transmission by the use of profile stores 132

Figure 5.16: Maintaining an individual profile store per connected environment 132

Figure 5.17: Distributed garbage collection for serialized objects 134

Figure 5.18: Distributed garbage collection for remote objects 137

Figure 6.1: Plux composition infrastructure ... 140

Figure 6.2: Plux runtime modules ... 141

Figure 7.1: User interface of the Time Recorder application .. 149

Figure 7.2: Frontend composition of the Time Recorder application 150

Figure 7.3: Backend composition of Time Recorder application 151

file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886543
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886543
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886543
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886544
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886544
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886545
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886546
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886546
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886547
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886547
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886548
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886548
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886549
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886549
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886550
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886551
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886552
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886552
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886553
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886554
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886555
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886556
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886557
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886558
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886559
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886560
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886561
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886562
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886563
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886564
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886565
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886566
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886567

List of Figures

194

Figure 7.4: User interface of the IDE for the Cross Compiler application 153

Figure 7.5: Composition of Cross Compiler case study .. 154

Figure 7.6: Number and percentage of generic and specific extensions per

application layer .. 156

Figure 7.7: Number and percentage of prefabricated extensions per application

layer .. 157

Figure 7.8: Reusability of generic and specific extensions depending on their

deployment environment and their application layer 158

Figure 7.9: Component reusability for building pure Web Applications...................... 160

Figure 7.10: Component reusability for building Thin Client Applications 160

Figure 7.11: Component reusability for building Rich Web Applications 161

Figure A.1: Structure of the virtual directory for a Plux web application hosted

with ASP.NET ... 170

Figure B.1: Starting the server runtime .. 178

Figure B.2: Starting the client runtime ... 179

Figure B.3: Running the coordinator .. 182

Figure B.4: Shutting down the server runtime ... 184

Figure B.5: Shutting down the client runtime ... 185

Figure B.6: Acquiring the dispatcher ... 186

Figure B.7: Releasing the dispatcher .. 188

Figure B.8: Acquire and run the dispatcher to empty the operation queue 188

Figure B.9: Enqueuing a dispatcher operation ... 189

Figure B.10: OpEnqueuing event handler (Terminated) ... 190

Figure B.11: OpEnqueued event handler (¬Token) ... 191

Figure B.12: OpEnqueued event handler (Token ˄ ¬Idle) ... 191

Figure B.13: OpEnqueued event handler (Token ˄ Idle ˄ Acquired) 191

Figure B.14: OpEnqueued event handler (Token ˄ Idle ˄ Released) 192

file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886568
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886569
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886570
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886570
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886571
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886571
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886572
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886572
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886573
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886574
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886575
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886576
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886576
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886577
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886578
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886579
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886580
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886581
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886582
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886583
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886584
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886585
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886586
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886587
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886588
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886589
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886590

195

 List of Listings

Listing 3.1: Interface and metadata for a slot definition .. 42

Listing 3.2: Implementation and metadata for a contributor extension 43

Listing 3.3: Implementation and metadata for a host extension 43

Listing 3.4: Retrieving meta-objects for plugged contributors from the

composition state .. 46

Listing 3.5: Retrieving meta-objects for tagged contributors from the

composition state .. 47

Listing 3.6: Handling CanPlug, Plugged, and Unplugging composition events 54

Listing 3.7: Host retrieving the extension object of its contributor in the Plugged

event handler ... 57

Listing 3.8: Metadata of a host with a slot for shared contributors 61

Listing 3.9: Implementation of a host that calls composition operations

programmatically ... 65

Listing 3.10: Attaching a composition behavior to a slot .. 67

Listing 3.11: Implementation of a self-contained composition behavior 68

Listing 3.12: Composition event handlers in the base class for composition

behaviors .. 69

Listing 3.13: Binding a rule-based composition behavior to a slot 70

Listing 3.14: Attaching multiple composition behaviors to a slot 72

Listing 3.15: Binding a TagBehavior with a filter for the tag to which the behavior

is applied .. 73

Listing 3.16: Implementation of a rule-based composition behavior 74

Listing 3.17: Implementation of a composition rule .. 75

Listing 3.18: Final implementation of the Workbench extension using automatic,

programmatic, and behavior-guided composition 80

Listing 3.19: XML settings file for the Visualizer extension ... 84

file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886591
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886592
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886593
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886594
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886594
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886595
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886595
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886596
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886597
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886597
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886598
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886599
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886599
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886600
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886601
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886602
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886602
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886603
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886604
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886605
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886605
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886606
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886607
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886608
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886608
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886609

List of Listings

196

Listing 3.20: Retreiving and modifying extension settings ... 85

Listing 5.1: The output of a rendered web application including a script tag with

a custom MIME type for Plux applications and a source attribute that

provides an address for connecting a remote runtime node 119

Listing 5.2: TimeRecord class decorated with the Serializable attribute 125

Listing 5.3: TimeRecord class that implements the ISerializable interface 125

Listing 5.4: Grammar of the Plux transmission language .. 127

Listing 5.5: Implementation and instantiation of a Call operation 128

Listing A.1: Structure of an ASP.NET web page with a Plux web control 171

Listing A.2: Structure of the configuration file Web.config ... 173

file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886610
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886611
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886611
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886611
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886612
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886613
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886614
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886615
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886616
file:///C:/Users/mj/Dropbox/Plux/Dissertations/Jahn/2014-06-30%20PhD%20Thesis%20-%20Markus%20Jahn.docx%23_Toc391886617

197

 Bibliography

[Abdelnur and

Hepper, 2003]

Abdelnur, A. and Hepper, S.: JavaTM Portlet Specification.

Version 1.0, JSR 168. http://download.oracle.com/otndocs/

jcp/PORTLET_1.0-FR-SPEC-G-F/, October 2003.

[Anderson, 2006] Andersen, L.: JDBC™ Specification. 4.0, JSR-221, Sun

Microsystems, Inc., California, USA. http://www.jcp.org

/en/jsr/detail?id=221, November 2006.

[Beer, 2000] Beer, W.: Visuelle Montageumgebung für Java Software-

komponenten. Master thesis, Institute for Systemsoftware,

Johannes Kepler University, Linz, Austria, June 2000.

[Berjon et al., 2013] Berjon, R., Faulkner, S., Leithead, T., Navara, E. D.,

O'Connor, E., and Pfeiffer, S.: HTML5. A vocabulary and

associated APIs for HTML and XHTML, World Wide Web

Consortium (W3C). http://www.w3.org/TR/html5/, August

2013.

[Berners-Lee

et al., 2005]

Berners-Lee, T., Fielding, R., and Masinter, L.: Uniform

Resource Identifier (URI): Generic Syntax. RFC 3986, Network

Working Group. https://tools.ietf.org/html/rfc3986, January

2005.

[Birman, 2005] Birman, K. P.: Reliable distributed systems. Technologies, Web

services, and Applications. Springer, New York, 2005. ISBN: 13

978-0-387-21509-9.

[Birrell and

Nelson, 1984]

Birrell, A.; Nelson, B.: Implementing remote procedure calls. In

ACM Transactions on Computer Systems (TOCS), Vol. 2.

Issue 1, New York, USA, pages 39–59, 1984.

doi: 10.1145/2080.357392.

[Birsan, 2005] Birsan, D.: On plug-ins and extensible architectures. In

ACM Queue. Patching and Deployment Volume 3, ACM New

York, pages 40–46, 2005. doi: 10.1145/1053331.1053345

Bibliography

198

[Booth et al., 2004] Booth, D., Haas, H., McCabe F., Newcomer, E., Champion

M., Ferris, Ch., and Orchard, D.: Web Services Architecture,

World Wide Web Consortium (W3C). http://www.w3.org/

TR/2004/NOTE-ws-arch-20040211/, February 2004.

[Boudreau, 2007] Boudreau, T., Tulach, J., and Wielenga, G.: Rich client

programming. Plugging into the NetBeans platform. Prentice

Hall, Upper Saddle River, NJ, 2007. ISBN: 0132354802.

[Box, 1998] Box, D.: Essential COM. Addison Wesley, Reading,

Massachusetts, 1998. ISBN: 0201634465.

[Bray et al., 2008] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and

Yergeau, F.: Extensible Markup Language (XML) 1.0. Fifth

Edition, World Wide Web Consortium (W3C).

http://www.w3.org/TR/xml/, November 2008.

[Bures et al., 2006] Bures, T., Hnetynka, P., and Plasil, F.: SOFA 2.0: Balancing

Advanced Features in a Hierarchical Component Model. In Fourth

International Conference on Software Engineering Research,

Management and Applications, SERA 2006, IEEE Computer

Society, pages 40-48, Seattle, Washington, USA, August 9-11,

2006.

[Bures et al., 2007] Bures, T., Hnetynka, P., Plasil, F., Klesnil, J., Kmoch, O.,

Kohan, T., and Kotrc, P.: Runtime Support for Advanced

Component Concepts. In 5th ACIS International Conference on

Software Engineering Research, Management & Applications,

SERA 2007, IEEE Computer Society, pages 337–345, Busan,

South Korea, August 20-22, 2007.

[Burns, 2013b] Burns, E.: JavaServer™ Faces Specification. Version 2.2, JSR-

344, Oracle, USA. http://www.jcp.org/en/jsr/detail?id=344,

March 2013.

[Cachin et al., 2011] Cachin, C., Guerraoui, R., and Rodrigues, L.: Introduction to

Reliable and Secure Distributed Programming. Springer,

Heidelberg, Dordrecht, London, New York, 2011. ISBN: 978-

3-642-15259-7.

[Christensen et al.,

2001]

Christensen, E., Curbera, F., Meredith, G., and

Weerawarana, S.: Web Services Description Language (WSDL).

Version 1.1, World Wide Web Consortium (W3C).

http://www.w3.org/TR/wsdl, March 2001.

Bibliography

199

[Chumbley et al., 2010] Chumbley, R., Durand, F., Pilz, G., and Rutt, T.: WS-I Basic

Profile Version 2.0. OASIS, Web Services Interoperability

Organization, http://ws-i.org/profiles/basicprofile-2.0-2010-

11-09.html, 2010.

[Clement et al., 2004] Clement, L., Hately, A., von Riegen, C., and Rogger, T.:

UDDI Specification. Version 3.0.2, OASIS. http://www.uddi

.org/pubs/uddi_v3.htm, October 2004.

[Crockford, 2006] Crockford, D.: The application/json Media Type for JavaScript

Object Notation (JSON), RFC 4627. http://tools.ietf.org/html/

rfc4627, July 2006.

[Delisle et al., 2006] Delisle, P., Luehe, J., and Roth, M.: JavaServer Pages™

Specification. Version 2.1, JSR-245, Sun Microsystems, Inc.,

California, USA. http://www.jcp.org/en/jsr/detail?id=245,

May 2006.

[DeMichiel and

Shannon, 2013]

DeMichiel, L. and Shannon, G.: Java™ Platform, Enterprise

Edition (Java EE) Specification. Version 7, JSR-342, Oracle,

USA. http://www.jcp.org/en/jsr/detail?id=342, April 2013.

[Eclipse, 2006] International Business Machines Corp.: Eclipse Platform

Technical Overview. http://eclipse.org/articles/Whitepaper-

Platform-3.1/ecli pse-platform-whitepaper.pdf, 2006.

Accessed April 2012.

[Ecma, 2010] ECMA International: Common Language Infrastructure (CLI).

Standard ECMA-335, 5th edition. http://www.ecma-interna

tional.org/publications/files/ECMA-ST/ECMA-335.pdf,

December 2010.

[Ecma, 2011] ECMA International: ECMAScript Language Specification.

Standard ECMA-262, 5.1 Edition. http://www.ecma-interna

tional.org/publications/standards/Ecma-262.htm, June 2011.

[Eder, 2008] Eder, M.: Content-Watcher: Ein Werkzeug zur Überwachung von

Web-Inhalten. Master thesis, Institute for Systemsoftware,

Johannes Kepler University, Linz, Austria, 2008.

[Equinox, 2012] The Eclipse Foundation: equinox OSGi. http://eclipse.org

/equinox/, 2012. Accessed November 2012.

[Fielding et al., 1999] Fielding, R., Gettys, J., Mogul, J. C., Frystyk, H., Masinter, L.,

Leach, P., and Berners-Lee, T.: Hypertext Transfer Protocol --

HTTP/1.1. RFC 2616, Network Working Group.

http://tools.ietf.org/html/rfc2616, June 1999.

Bibliography

200

[Fielding, 2000] Fielding, R.: Architectural Styles and the Design of Network-

based Software Architectures. PhD thesis, Unitversity of

California, Irvine, http://www.ics.uci.edu/~fielding/pubs/dis

sertation/fielding_dissertation.pdf, California, Irvine, 2000.

[Freed and

Borenstein, 1996]

Freed, N. and Borenstein, N.: Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types. RFC 2046,

Network Working Group. http://tools.ietf.org/html/rfc2046,

November 1996.

[Garrett, 2010] Garrett, J. J.: Ajax: A New Approach to Web Applications.

Adaptive Path Inc., http://www.adaptivepath.com/ideas

/ajax-new-approach-web-applications/, February 2005.

[Gruber, 2010] Gruber, A.: Konfigurationswerkzeug „Plugin-Explorer“ für die

Plugin-Plattform Plux.NET. Bachelor thesis, Institute for

Systemsoftware, Johannes Kepler University, Linz, Austria,

2010.

[Gudgin et al., 2007] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.,

Nielsen, H., Karmarkar, A., and Lafon, Y.: SOAP Version 1.2,

World Wide Web Consortium (W3C). http://www.w3.org/

TR/2007/REC-soap12-part1-20070427/, April 2007.

[Haas and Brown, 2004] Haas, H. and Brown, A.: Web Services Glossary. W3C

Working Group, http://www.w3.org/TR/2004/NOTE-ws-

gloss-20040211/, February 2004. Accessed November 2013.

[Hagmüller, 2013] Hagmüller, P.: Plux: Portierung C# nach nach Delphi. Bachelor

thesis, Institute for Systemsoftware, Johannes Kepler

University, Linz, Austria, 2013.

[Heineman and

Councill, 2001]

Heineman, G. T. and Councill, W. T.: Component-based

software engineering. Putting the pieces together. Definition of a

Software Component and Its Elements. Addison-Wesley,

pages 5-19, Boston, 2001. ISBN: 9780201704853.

[Hepper, 2008] Hepper, S.: Java™ Portlet Specification. Version 2.0, JSR-286,

IBM Corporation. http://www.jcp.org/en/jsr/detail?id=286,

January 2008.

[Hnetynka and

Plasil, 2006]

Hnetynka, P. and Plasil, F.: Dynamic Reconfiguration and

Access to Services in Hierarchical Component Models. In

Component-Based Software Engineering. 9th International

Symposium, CBSE 2006. Lecture Notes in Computer Science

(LNCS) 4063, Springer Berlin Heidelberg, pages 352–359,

Västerås, Sweden, June 29 - July 1, 2006.

Bibliography

201

[Hribernig, 2012] Hribernig, T.: Retrofitting Security in Component-based

Applications. Master thesis, Institute for System Software,

Johannes Kepler University, Linz, Austria, 2012.

[Jahn, 2009] Jahn, M.: Entwurf und Implementierung eines Cross-Compilers

von Delphi nach C#. Master thesis, Institute for System

Software, Johannes Kepler University, Linz, Austria, 2009.

[Jahn et al., 2010a] Jahn, M., Wolfinger, R., and Mössenböck, H.: Extending Web

Applications with Client and Server Plug-ins. In Software

Engineering 2010 - Fachtagung des GI-Fachbereichs

Softwaretechnik, SE 2010. LNI 159, GI, pages 33–44,

Paderborn, Germany, February 22-26, 2010.

[Jahn et al., 2010b] Jahn, M., Löberbauer, M., Wolfinger, R., and Mössenböck,

H.: Rule-Based Composition Behaviors in Dynamic Plug-In

Systems. In 17th Asia Pacific Software Engineering Conference,

APSEC 2010, IEEE Computer Society, pages 80–89, Sydney,

Australia, November 30 - December 3, 2010. doi:

10.1109/APSEC.2010.19

[Jahn et al., 2011] Jahn, M., Wolfinger, R., Löberbauer, M., and Mössenböck,

H.: Composing user-specific web applications from distributed

plug-ins. In Computer Science - Research and Development,

Springer, pages 1–21, 2011. doi: 10.1007/s00450-011-0182-0

[Kuhrmann, 2004] Kuhrmann, M., Calamé, J. R., and Horn, E.: Verteilte Systeme

mit .NET remoting. Grundlagen - Konzepte - Praxis. Elsevier,

Spektrum, Akad. Verl., München ;, Heidelberg, 2004. ISBN:

3-8274-1545-4.

[Lengauer, 2012] Lengauer, P.: Trace-based Debugger for Dynamically Composed

Applications. Master thesis, Institute for System Software,

Johannes Kepler University, Linz, Austria, 2012.

[Löberbauer et al., 2010] Löberbauer, M., Wolfinger, R., Jahn, M., and Mössenböck,

H.: Testing the composability of plug-and-play components: A

method for unit testing of dynamically composed applications. In

Intelligent Systems and Informatics (SISY), 2010 8th

International Symposium, pages 413–418, Subotica, Serbia,

September 10-11, 2010. doi: 10.1109/SISY.2010.5647368

[Löberbauer et al., 2012] Löberbauer, M., Wolfinger, R., Jahn, M., and Mössenböck,

H.: Composition Mechanisms Classified by their Contributor

Provision Characteristics. In IEEE 10th Jubilee International

Symposium on Intelligent Systems and Informatics, Subotica,

Serbia, September 20-22, 2012.

Bibliography

202

[Löberbauer, 2012] Löberbauer, M.: Testing and Debugging of Dynamically

Composed Applications. PhD thesis, Christian Doppler

Laboratory for Automated Software Engineering, Institute

for System Software, Johannes Kepler University, Linz,

Austria, October 2012.

[Makewave, 2013] Makewave: Knopflerfish. Open Source OSGi Service Platform,

Version 4.0.0. http://www.knopflerfish.org/, 2013.

[McIlroy, 1968] McIlroy, M. D.: Mass produced software components. In Software

Engineering: Report of a conference sponsored by the NATO

Science Committee, Scientific Affairs Division, NATO, pages

79–87, 7-11 October, 1968.

[Microsoft, 1996] Microsoft News Center: Microsoft Announces ActiveX

Technologies. http://www.microsoft.com/en-us/news/press

/1996/mar96/activxpr.aspx, 1996. Accessed November 2012.

[Microsoft, 1998] Microsoft Developer Network (MSDN): Introducing Microsoft

Transaction Server. http://msdn.microsoft.com/en-us/library

/aa480405.aspx#feedback, 1998. Accessed November 2012.

[Microsoft, 2003] Microsoft TechNet: RPC Technical Reference. http://technet

.microsoft.com/en-us/library/cc759499.aspx, 2003. Accessed

November 2012.

[Microsoft, 2010] Microsoft Developer Network (MSDN): Managed Extensibility

Framework Overview. http://msdn.microsoft.com/en-us/libra

ry/dd460648.aspx, 2010. Accessed April 2012.

[Microsoft, 2011a] Microsoft Developer Network (MSDN): .NET Framework

Remoting Overview. http://msdn.microsoft.com/en-us/library

/vstudio/kwdt6w2k(v=vs.100).aspx, 2011.

[Microsoft, 2011b] Microsoft: Microsoft Silverlight 5. http://www.microsoft.com

/silverlight, 2011. Accessed April 2012.

[Microsoft, 2012a] Microsoft Developer Network (MSDN): About Dynamic Data

Exchange (Windows). http://msdn.microsoft.com/en-us/library

/windows/desktop/ms648774(v=vs.85).aspx, 2012. Accessed

February 2013.

[Microsoft, 2012b] Microsoft Developer Network (MSDN): OLE Background.

http://msdn.microsoft.com/en-us/library/19z074ky.aspx, Ac-

cessed November 2012.

[Microsoft, 2012c] Microsoft Developer Network (MSDN): The Component

Object Model (COM). http://msdn.microsoft.com/en-us

/library/windows/desktop/ms694363(v=vs.85).aspx, 2012.

Accessed November 2012.

Bibliography

203

[Microsoft, 2012d] Microsoft TechNet: DCOM Technical Overview.

http://technet.microsoft.com/en-us/library/cc722925.aspx,

Accessed November 2012.

[Microsoft, 2012e] Microsoft Developer Network (MSDN): COM+ (Component

Services). http://msdn.microsoft.com/en-us/library/windows

/desktop/ms685978(v=vs.85).aspx, 2012. Accessed November

2012.

[Microsoft, 2012f] Microsoft Developer Network (MSDN): Message Queuing

(MSMQ). http://msdn.microsoft.com/en-us/library/ms7114

72.aspx. Accessed November 2012.

[Microsoft, 2012g] Microsoft Developer Network (MSDN): Overview of the.NET

Framework. http://msdn.microsoft.com/en-us/library/zw4w5

95w.aspx. Accessed November 2012.

[Microsoft, 2012h] Microsoft Developer Network (MSDN): Visual Studio 2012.

http://msdn.microsoft.com/en-us/library/dd831853.aspx.

Accessed November 2012.

[Microsoft, 2012i] Microsoft Developer Network (MSDN): Windows Commu-

nication Foundation (WCF). http://msdn.microsoft.com/en-us

/library/dd456779.aspx, 2012. Accessed November 2012.

[Microsoft, 2012j] Microsoft Developer Network (MSDN): Active Server Pages.

http://msdn.microsoft.com/en-us/library/aa286483.aspx.

Accessed November 2012.

[Microsoft, 2012k] Microsoft: ASP.NET. Web Development with Power,

Productivity & Speed. http://www.asp.net/, 2013. Accessed

August 2013.

[Microsoft, 2012l] Microsoft Developer Network (MSDN): Common Language

Runtime (CLR). http://msdn.microsoft.com/en-us/library/8bs

2ecf4.aspx. Accessed November 2012.

[Microsoft, 2013a] Microsoft Developer Network (MSDN): Named Pipes.

http://msdn.microsoft.com/en-us/library/windows/desktop/a

a365590(v=vs.85).aspx, 2013.

[Microsoft, 2013b] Microsoft Developer Network (MSDN): Application Domains.

http://msdn.microsoft.com/en-us/library/2bh4z9hs.aspx. Ac-

cessed August 2013.

[Microsoft, 2013c] Microsoft: Internet Information Services (IIS).

http://www.iis.net/, 2013. Accessed August 2013.

Bibliography

204

[Mittermair, 2010] Mittermair, C.: Zerlegung eines monolithischen Softwaresystems

in ein Plug-In-basiertes Komponentensystem. Master thesis,

Institute for System Software, Johannes Kepler University,

Linz, Austria, 2010.

[Mordani, 2009] Mordani, R.: Java™ Servlet Specification. Version 3.0, Sun

Microsystems, Inc., JSR-315. http://www.jcp.org/en/jsr

/detail?id=315, December 2009.

[Muskalla and

Sternberg, 2007]

Muskalla, B. and Sternberg, R.: RCP goes Web 2.0. Web-enabled

RCP Applications with the Rich Ajax Platform. In Eclipse-

Magazin, Vol. 12, 2007.

[NPAPI, 2012] MozillaWiki: NPAPI Specifications. https://wiki.mozilla

.org/NPAPI#Specifications, September 2012.

[OASIS, 2013] OASIS (Organization for the Advancement of Structured

Information Standards): Web Services Interoperability (WS-I).

http://www.oasis-ws-i.org/. Accessed August 2013.

[Oliphant, 1996] Oliphant, Z.: Programming Netscape plug-ins, Sams Net,

Indianapolis, 1996. ISBN: 1575210983.

[OMG, 2006] Object Management Group (OMG): Meta Object Facility

(MOF) Core Specification. Version 2.0, http://www.omg.org

/spec/MOF/2.0/PDF/, January 2006.

[OMG, 2011] Object Management Group (OMG): Unified Modeling

Language (UML), Specification, Version 2.4.1.

http://www.omg.org/spec/UML/2.4.1/, August 2011.

[OMG, 2012] Object Management Group, Inc. (OMG): Common Object

Request Broker Architecture (CORBA), Specification, Version

3.3. http://www.omg.org/spec/CORBA/3.3/, November 2012.

[Oracle, 2010] Oracle: Java RMI Specification, Java SE 7. http://docs.oracle

.com/javase/7/docs/platform/rmi/spec/rmiTOC.html, 2010.

[Oracle, 2013a] Oracle: Java Development Kit (JDK). http://www.oracle.com

/technetwork/java/index.html, October 2013.

[Oracle, 2013b] Oracle: The NetBeans Platform, https://netbeans.org/features

/platform/index.html. Accessed November 2013.

[Oracle, 2013c] Oracle: A Brief History of NetBeans, https://netbeans.org

/about/history.html. Accessed December 2013.

[Oracle, 2013d] Oracle: Happy Birthday NetBeans. Interview with Jaroslav

"Yarda" Tulach. https://netbeans.org/community/articles

/interviews/yarda-tulach.html. Accessed December 2013.

Bibliography

205

[Oracle, 2013e] Oracle: Lesson: Java Applets, http://docs.oracle.com/javase

/tutorial/deployment/applet/. Accessed December 2013..

[OSGi Alliance, 2012a] OSGi™ Alliance: OSGi Release 5. http://www.osgi.org/down

load/r5/osgi.core-5.0.0.pdf, March 2012. Accessed November

2013.

[OSGi Alliance, 2012b] OSGi™ Alliance: OSGi Enterprise Release 5. www.osgi.org

/download/r5/osgi.enterprise-5.0.0.pdf, March 2012.

Accessed November 2013.

[Rammer, 2005] Rammer, I. and Szpuszta, M.: Advanced .NET remoting.

Apress; Distributed by Springer-Verlag, Berkeley, CA, New

York, 2005. ISBN: 1-59059-417-7.

[RAP, 2012] RAP - Rich Ajax Platform. Enabling modular business apps for

desktop, browser and mobile. http://www.eclipse.org/rap/, 2012.

Accessed November 2012.

[Reinthaler, 2012] Reinthaler, T.: Deployment Assistant for Plux. Master thesis,

Institute for Systemsoftware, Johannes Kepler University,

Linz, Austria, 2012.

[Reiter and

Wolfinger, 2007]

Reiter, S. and Wolfinger, R.: Erfahrungen bei der Portierung von

Delphi Legacy Code nach .NET. In Software Engineering 2007,

Fachtagung des GI-Fachbereichs Softwaretechnik, SE 2007. LNI

105, GI, pages 353–356, Hamburg, Germany, March 27-30,

2007.

[Robinson and Coar,

2004]

Robinson, D. and Coar, K.: The Common Gateway Interface

(CGI) Version 1.1. RFC 3875, Network Working Group.

http://tools.ietf.org/html/rfc3875, October 2004.

[Pichler, 2009] Pichler, R.: Metrix - A Measuring Tool for Run-time Figures in

Plug-in based .NET Applications. Bachelor thesis, Institute for

Systemsoftware, Johannes Kepler University, Linz, Austria,

2009.

[Postel, 1980] Postel, J.: User Datagram Protocol (UDP). RFC 768.

http://tools.ietf.org/html/rfc768, August 1980.

[Postel, 1981] Postel, J.: Transmission Control Protocol - DARPA Internet

Program Protocol Specification. RFC 793, Defense Advanced

Research Projects Agency, Information Processing

Techniques Office, Virginia. http://tools.ietf.org/html/rfc793,

September 1981.

Bibliography

206

[Schell, 1971] Schell, R. R.: DYNAMIC RECONFIGURATION in a

MODULAR COMPUTER SYSTEM. Technical Report,

Massachusetts Institute of Technology, Cambridge, MA,

USA, 1971.

[Schenkermayr, 2013] Schenkermayr, B.: Ein komponentenbasierter Taschenrechner auf

Basis von Plux. Master thesis, Institute for Systemsoftware,

Johannes Kepler University, Linz, Austria, 2013.

[Spasov, 2013] Spasov, N.: Porting the Plugin Platform Plux to Java. Master

thesis, Institute for System Software, Johannes Kepler

University, Linz, Austria, 2013.

[Srinivasan, 1995] Srinivasan, R.: RPC: Remote Procedure Call Protocol

Specification Version 2. RFC 1831, Network Working Group.

http://tools.ietf.org/html/rfc1831, August 1995.

[Sun Microsys-

tems, 1996]

Sun Microsystems Inc.: JavaBeans (TM) API specification, 2550

Garcia Avenue, Mountain View, CA 94043, Version 1.00-A.

ftp://sunsite.univie.ac.at/pub/languages/java/splash.javasoft.

com/pub/beans.100A.pdf, December 1996.

[Szyperski, 2002] Szyperski, C., Gruntz, D., and Murer, S.: Component software.

Beyond object-oriented programming. ACM Press; Addison-

Wesley, New York, London, Boston, 2002. ISBN: 0201745720.

[Tanenbaum and Van

Steen, 2007]

Tanenbaum, A. and Van Steen, M.: Distributed systems.

Principles and Paradigms. Pearson Prentice Hall, Upper

Saddle River, NJ, 2007. ISBN: 0-13-239227-5.

[The Apache Software

Foundation, 2008]

The Apache Software Foundation: Apache Felix.

http://felix.apache.org/, 2008.

[The Apache Software

Foundation, 2013]

The Apache Software Foundation: Apache httpd Tutorial:

Introduction to Server Side Includes. http://httpd.apache.org

/docs/current/howto/ssi.html, November 2013.

[The Open

Group, 1999]

The Open Group: The ActiveX Core Technology Reference,

Reading, Berkshire, 1999.

[The PHP Group, 2012] The PHP Group: PHP: Hypertext Preprocessor.

http://www.php.net/manual/en/preface.php, 2013. Accessed

November 2012.

[Thurlow, 2009] Thurlow, R.: RPC: Remote Procedure Call Protocol Specification

Version 2. RFC 5531, Network Working Group.

http://tools.ietf.org/html/rfc5531, May 2009.

[Vatkina, 2013] Vatkina, M.: Enterprise JavaBeans™. EJB Core Contracts and

Requirements. Version 3.2, JSR-345, Oracle, USA.

http://www.jcp.org/en/jsr/detail?id=345, April 2013.

Bibliography

207

[Vogel, 2009] Vogel, O.: Software-Architektur. Grundlagen - Konzepte -

Praxis. Spektrum, Akad. Verl., Heidelberg, 2009. ISBN: 978-

3-8274-1933-0.

[Weinreich and

Sametinger, 2001]

Weinreich, R. and Sametinger, J.: Component-based software

engineering. Putting the pieces together. Component Models and

Component Services: Concepts and Principles. Addison-Wesley,

pages 33-48, Boston, 2001. ISBN: 9780201704853.

[Weiss, 2010] Weiss, S.: Beispielprogramm Kundenbeziehungsmanagement

"Plux-CRM" für die Plugin-Plattform Plux.NET. Master thesis,

Institute for Systemsoftware, Johannes Kepler University,

Linz, Austria, 2010.

[Winer, 1999] Winer, D.: XML-RPC Specification, UserLand Software.

http://xmlrpc.scripting.com/spec.html, June 1999.

[Winer, 2003] Winer, D.: RSS 2.0 Specification, Berkman Center for Internet

& Society at Harvard Law School. http://cyber.law.har

vard.edu/rss/rss.html, July 2003.

[White, 1976] White, J.: A High-Level Framework for Network-Based Resource

Sharing, Stanford Research Institute, California, RFC 707.

http://tools.ietf.org/html/rfc707, January 1976.

[Wolfinger et al., 2006] Wolfinger, R., Dhungana, D., Prähofer, H., and Mössenböck,

H.: A Component Plug-In Architecture for the .NET Platform. In

Modular Programming Languages, 7th Joint Modular Languages

Conference, JMLC 2006, Oxford, UK, September 13-15, 2006,

Proceedings. Lecture Notes in Computer Science 4228,

Springer, 287–305, 2006. doi: 10.1007/11860990_18.

[Wolfinger and

Prähofer, 2007]

Wolfinger, R. and Prähofer, H.: Integration models in a .NET

plug-in framework. In Software Engineering 2007, Fachtagung

des GI-Fachbereichs Softwaretechnik, SE 2007. LNI 105, GI,

pages 217–230, Hamburg, Germany, March 27-30, 2007.

[Wolfinger et al., 2008] Wolfinger, R., Reiter, S., Dhungana, D., Grünbacher, P., and

Prahofer, H.: Supporting Runtime System Adaptation through

Product Line Engineering and Plug-in Techniques. In 7th IEEE

International Conference on Composition-Based Software Systems,

ICCBSS 2008, IEEE Computer Society Press, pages 21–30,

Madrid, Spain, February 25-29, 2008.

doi:10.1109/ICCBSS.2008.30

Bibliography

208

[Wolfinger, 2010] Wolfinger, R.: Dynamic Application Composition with

Plux.NET. Composition Model, Composition Infrastructure. PhD

thesis, Christian Doppler Laboratory for Automated

Software Engineering, Institute for System Software,

Johannes Kepler University, Linz, Austria, January 2010.

[Wolfinger et al., 2010] Wolfinger, R., Löberbauer, M., Jahn, M., and Mössenböck,

H.: Adding genericity to a plug-in framework. In Proceedings of

the ninth international conference on Generative programming

and component engineering, GPCE 2010, ACM; Association for

Computing Machinery, pages 93–102, Eindhoven, The

Netherlands, October 10-13, 2010. doi:

10.1145/1868294.1868308.

[Wolfinger et al., 2012] Wolfinger, R., Löberbauer, M., Jahn, M., and Mössenböck,

H.: Retrofitting Security in Component-based Applications. In

Computer Science - Research and Development. Springer, 2012

(submitted for publication).

209

Curriculum Vitae

Name: Markus Jahn

Date of birth: March 6, 1982

Place of birth: Freistadt, Austria

Nationality: Austria

Contact: markus.jahn@jku.at

Education

2009-2014 Doctorate Degree in Technical Sciences

 Johannes Kepler University, Linz

2007-2009 Master's Degree in Computer Science

 Johannes Kepler University, Linz

 Graduated with distinction

2006-2007 Study abroad in Computer Science

 Dublin City University, Ireland

2002-2007 Bachelor's Degree in Computer Science

 Johannes Kepler University, Linz

1996-2001 Higher technical school for Building Construction, Linz

 Graduated with distinction

1992-1996 Secondary school, Grünbach

1988-1992 Primary school, Grünbach

Professional Career

2013- Software Engineer, Wolfinger Software, Linz

2008-2013 Research Assistant, Christian Doppler Laboratory

 for Automated Software Engineering

 Johannes Kepler University, Linz

	Abstract
	Table of Contents
	1 Introduction
	1.1 Research Context
	1.2 Problem Statement
	1.3 Research Contributions
	1.4 Project History
	1.5 Structure of the Thesis

	2 State of the Art
	2.1 Historical Overview
	2.1.1 Component Technologies
	Microsoft Component Technologies
	OMG Component Technology
	Java Component Technologies
	Netscape Component Technology
	Academic Component Technologies

	2.1.2 Distribution Technologies
	Berkeley Sockets
	Remote Procedure Calls (RPC)
	Java Remote Method Invocation (RMI) / .NET Remoting
	Web Services
	Windows Communication Foundation (WCF)

	2.1.3 Web Technologies
	Common Gateway Interface
	Server Side Includes
	PHP: Hypertext Preprocessor
	Java Web Technologies
	Microsoft Web Technologies
	Portlets

	2.2 Terminology
	2.2.1 Component Terminology
	Software Component
	Component Model
	Interface Standard
	Metadata Standard
	Interaction Standard
	Composition Standard
	Packaging and Deployment Standard
	Component Model Implementation
	Customization
	Extension, Host, and Contributor
	Composition Model

	2.2.2 Distribution Terminology
	Distributed System
	Server / Client
	Distribution Transparency
	Distributed Object, Remote Object, Serialized Object
	Object Data Synchronization
	Object Reference
	Reference Identity
	Lifetime Management
	Thread Management
	Object Server
	Fault Tolerance
	Security

	2.2.3 Web Terminology
	Web application
	Request
	Response
	Round Trip
	Session

	2.3 Evaluation of Existing Technologies
	2.3.1 Relevant Capabilities
	Customization Capabilities
	Distribution Capabilities
	Multi-user Capabilities
	Web Capabilities

	2.3.2 Capabilities of Existing Technologies
	Common Object Request Broker (CORBA)
	Component Object Model (COM)
	Open Services Gateway initative (OSGi)
	SOFA Component Model
	Managed Extensibility Framework (MEF)
	Plux
	Eclipse with Remote Application Platform (RAP)
	Browser Plugins
	Sockets
	Common Gateway Interface (CGI)
	Server Side Includes (SSI)
	Java Servlets
	Server-side Scripting Languages
	Java Enterprise Edition / ASP.NET
	Portals

	2.3.3 Deficiencies of Existing Technologies

	3 The Plux Component Model
	3.1 Metadata Standard
	3.2 Deployment Standard
	3.3 Composition Standard
	3.3.1 Composition State
	3.3.2 Composition Operations
	Create
	Plug
	Activate
	Open
	Tag
	Destroy
	Unplug
	Deactivate
	Close
	Untag

	3.3.3 Composition Events
	3.3.4 Automatic Composition
	Composition Process
	Host-triggered Composition
	Discoverer-triggered Composition
	Composition Sequences with Multiple Contributors
	Non-shared versus Shared Contributors
	Decomposition Process
	Garbage Collection

	3.3.5 Programmatic Composition
	3.3.6 Behavior-guided Composition
	Self-contained Composition Behaviors
	Rule-based Composition Behaviors
	UI-bound Composition Behaviors

	3.3.7 User-guided composition
	Visualizer
	Console
	Persistor
	Scripting Engine

	3.4 Interaction Standard
	3.4.1 Thread Management
	3.4.2 Exception Handling

	3.5 Customization Standard

	4 Plugin-based Distributed Multi-user Web Applications
	4.1 Server-side Extensions
	4.2 Client-side Extensions
	4.3 Sandbox Extensions
	4.4 Concluding Example

	5 The Extended Plux Component Model for the Web
	5.1 Metadata Standard
	5.2 Deployment Standard
	5.2.1 User-specific Repositories
	5.2.2 Hierarchical Discovery

	5.3 Composition Standard
	5.3.1 Composition State
	Multi-user Composition State
	Distributed Composition State

	5.3.2 Composition Process
	Multi-user Composition Process
	Distributed Composition Process

	5.4 Interaction Standard
	5.4.1 Thread Management
	Multi-user Runtime Thread
	Distributed Runtime Thread

	5.4.2 Connection Establishment
	5.4.3 Communication Operations
	Call
	Invoke
	GetToken
	SetToken
	Disconnect

	5.4.4 Object Transmission Mode
	Serialized Objects
	Remote Objects
	Customized Object Transmission

	5.4.5 Object Transmission Format
	Plux Transmission Language
	Format Example

	5.4.6 Object Reference Identity
	5.4.7 Object Data Synchronization
	Incremental Data Transmission
	Multiple Profile Stores

	5.4.8 Object Lifetime Management
	Garbage Collection for Serialized Objects
	Garbage Collections for Remote Objects

	5.4.9 Interoperability

	5.5 Customization Standard

	6 Component Model Implementation
	6.1 Composition Infrastructure
	Runtime Architecture

	6.2 Runtime Add-ons
	Security Add-on
	Testing Add-on
	Debugging Add-on

	6.3 Runtime Libraries
	Administration Library
	Web UI Library
	Layout Library

	7 Evaluation
	7.1 Case Studies
	7.1.1 Time Recorder
	System layer (generic)
	Presentation layer (generic)
	Presentation layer (specific)
	Application layer (generic)
	Application Layer (specific)
	Data layer (specific)
	Data layer (generic)

	7.1.2 Cross Compiler with IDE
	Presentation layer (specific)
	Application layer (specific)
	Data layer (specific)

	7.2 Component Prefabrication and Reusability
	7.2.1 Prefabrication
	7.2.2 Reusability
	Pure Web Applications
	Thin Client Applications
	Rich Web Applications

	8 Summary
	8.1 Contributions
	Component Model Refinements
	Component Model Extensions

	8.2 Open Issues
	Disconnected Distributed Objects
	Complicated UI Development for Thin Client Applications

	8.3 Future Work
	Connection Recovery
	Persistence
	Interoperability
	Distributed Locking
	Resource Constraints
	Debugging Support

	8.4 Conclusion

	Appendix A: Hosting Plux Web Applications
	A.1 The Plux Web Control
	A.2 Runtime Configuration
	Application
	Environment Uri
	Create AppDomain
	Startup Path
	Arguments
	Dispatcher
	Loader
	Logger
	Channel
	Serializer
	User Store
	Add-ons

	Appendix B: Runtime Procedures
	B.1 Runtime Lifetime
	B.1.1 Startup
	Server Runtime
	Client Runtime

	B.1.2 Run
	B.1.3 Shutdown
	Server Runtime
	Client Runtime

	B.2 Dispatcher Operations
	B.2.1 Acquire
	B.2.2 Release
	AcquireAndRun

	B.2.3 Invoke and BeginInvoke
	Invoke and BeginInvoke (Terminated)
	OpEnqueued (Token)
	OpEnqueued (Token ˄ Idle)
	OpEnqueued (Token ˄ Idle ˄ Acquired)
	OpEnqueued (Token ˄ Idle ˄ Released)

	List of Figures
	List of Listings
	Bibliography

